Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2024, Volume 520, Number 1, Pages 11–18
DOI: https://doi.org/10.31857/S2686954324060029
(Mi danma570)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Three-dimensional grid-characteristic schemes of high order of approximation

I. B. Petrova, V. I. Golubeva, A. V. Shevchenkoab, A. Sharmac

a Moscow Institute of Physics and Technology (National Research University), Dolgoprudnyi, Moscow oblast, Russia
b Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow, Russia
c IPS Academy, Institute of Engineering and Science, Indore, India
Citations (1)
DOI: https://doi.org/10.31857/S2686954324060029
Abstract: This paper examines seismic wave propagation in a full three-dimensional case. In practice, the stress-strain state of a geological medium during seismic exploration is frequently described using acoustic and linear elastic models. The governing systems of partial differential equations of both models are linear hyperbolic. A computational algorithm for them can be constructed by applying a grid-characteristic approach. In the case of multidimensional problems, an important role is played by dimensional splitting. However, the final three-dimensional scheme fails to preserve the achieved high order even in the case of extended spatial stencils used to solve the resulting one-dimensional problems. In this paper, we propose an approach based on multistage operator splitting schemes, which made it possible to construct a three-dimensional grid-characteristic scheme of the third order. Several test problems are solved numerically.
Keywords: mathematical modeling, seismic waves, hyperbolic systems of equations, grid-characteristic method, order of approximation, operator splitting.
Funding agency Grant number
Russian Science Foundation 24-49-02002
This work was supported by the Russian Science Foundation, project no. 24-49-02002, https://rscf.ru/en/project/24-49-02002/.
Received: 25.05.2024
Revised: 17.07.2024
Accepted: 22.10.2024
English version:
Doklady Mathematics, 2024, Volume 110, Issue 3, Pages 457–463
DOI: https://doi.org/10.1134/S1064562424601343
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: I. B. Petrov, V. I. Golubev, A. V. Shevchenko, A. Sharma, “Three-dimensional grid-characteristic schemes of high order of approximation”, Dokl. RAN. Math. Inf. Proc. Upr., 520:1 (2024), 11–18; Dokl. Math., 110:3 (2024), 457–463
Citation in format AMSBIB
\Bibitem{PetGolShe24}
\by I.~B.~Petrov, V.~I.~Golubev, A.~V.~Shevchenko, A.~Sharma
\paper Three-dimensional grid-characteristic schemes of high order of approximation
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2024
\vol 520
\issue 1
\pages 11--18
\mathnet{http://mi.mathnet.ru/danma570}
\elib{https://elibrary.ru/item.asp?id=80301232}
\transl
\jour Dokl. Math.
\yr 2024
\vol 110
\issue 3
\pages 457--463
\crossref{https://doi.org/10.1134/S1064562424601343}
Linking options:
  • https://www.mathnet.ru/eng/danma570
  • https://www.mathnet.ru/eng/danma/v520/i1/p11
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025