|
Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2024, Volume 520, Number 1, Pages 19–23 DOI: https://doi.org/10.31857/S2686954324060033
(Mi danma571)
|
|
|
|
MATHEMATICS
Lattice Boltzmann model for nonlinear anisotropic diffusion with applications to image processing
O. V. Ilyin Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow, Russia
DOI:
https://doi.org/10.31857/S2686954324060033
Abstract:
It is shown that the multiple nonconstant relaxation time lattice Boltzmann equation for five discrete velocities is equivalent in the diffusion limit to a nonlinear anisotropic diffusion equation. The proposed model is applied to speckle and Gaussian noise removal problem.
Keywords:
lattice Boltzmann equations, nonlinear anisotropic diffusion, Perona–Malik equations.
Citation:
O. V. Ilyin, “Lattice Boltzmann model for nonlinear anisotropic diffusion with applications to image processing”, Dokl. RAN. Math. Inf. Proc. Upr., 520:1 (2024), 19–23; Dokl. Math., 110:3 (2024), 464–468
Linking options:
https://www.mathnet.ru/eng/danma571 https://www.mathnet.ru/eng/danma/v520/i1/p19
|
|