Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2024, Volume 520, Number 1, Pages 29–34
DOI: https://doi.org/10.31857/S2686954324060052
(Mi danma573)
 

MATHEMATICS

Tunnel clustering method

F. T. Aleskerovab, A. L. Myachinab, V. I. Yakubaab

a National Research University Higher School of Economics, Moscow, Russia
b V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, Russia
DOI: https://doi.org/10.31857/S2686954324060052
Abstract: We propose a novel method for rapid pattern analysis of high-dimensional numerical data, termed tunnel clustering. The main advantages of the method are its relatively low computational complexity, endogenous determination of cluster composition and number, and a high degree of interpretability of final results. We present descriptions of three different variations: one with fixed hyperparameters, an adaptive version, and a combined approach. Three fundamental properties of tunnel clustering are examined. Practical applications are demonstrated on both synthetic datasets containing 100. 000 objects and on classical benchmark datasets.
Keywords: cluster, clustering, cluster analysis, tunnel clustering, transition degree.
Funding agency Grant number
National Research University Higher School of Economics
Trapeznikov Institute of Management Problems of the Russian Academy of Sciences
Russian Science Foundation 24-61-00030
The study was carried out within the framework of the fundamental research program of the HSE University with support from the Laboratory of Choice Theory and Decision Analysis of the Trapeznikov Institute of Control Sciences of the Russian Academy of Sciences. This work was also supported in part by the Russian Science Foundation, project no. 24-61-00030, https://rscf.ru/en/project/24-61-00030/.
Presented: D. A. Novikov
Received: 05.04.2024
Revised: 23.07.2024
Accepted: 30.10.2024
English version:
Doklady Mathematics, 2024, Volume 110, Issue 3, Pages 474–479
DOI: https://doi.org/10.1134/S1064562424702314
Bibliographic databases:
Document Type: Article
UDC: 004.622
Language: Russian
Citation: F. T. Aleskerov, A. L. Myachin, V. I. Yakuba, “Tunnel clustering method”, Dokl. RAN. Math. Inf. Proc. Upr., 520:1 (2024), 29–34; Dokl. Math., 110:3 (2024), 474–479
Citation in format AMSBIB
\Bibitem{AleMyaYak24}
\by F.~T.~Aleskerov, A.~L.~Myachin, V.~I.~Yakuba
\paper Tunnel clustering method
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2024
\vol 520
\issue 1
\pages 29--34
\mathnet{http://mi.mathnet.ru/danma573}
\elib{https://elibrary.ru/item.asp?id=80301235}
\transl
\jour Dokl. Math.
\yr 2024
\vol 110
\issue 3
\pages 474--479
\crossref{https://doi.org/10.1134/S1064562424702314}
Linking options:
  • https://www.mathnet.ru/eng/danma573
  • https://www.mathnet.ru/eng/danma/v520/i1/p29
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025