Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2024, Volume 520, Number 2, Pages 41–48
DOI: https://doi.org/10.31857/S268695432470036X
(Mi danma586)
 

This article is cited in 2 scientific papers (total in 2 papers)

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Neural network image classifiers informed by factor analyzers

A. M. Dostovalova, A. K. Gorshenin

Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow, Russia
Citations (2)
DOI: https://doi.org/10.31857/S268695432470036X
Abstract: The paper develops an approach to probability informing deep neural networks, that is, improving their resuits by using various probability models within architectural elements. We introduce factor analyzers with additive-impulse noise as such a model. The identifiability of the model is proved. The relationship between the parameter estimates by the methods of least squares and maximum likelihood is established, which actually means that the estimates of the parameters of the factor analyzer obtained within the informed block are unbiased and consistent. A mathematical model is used to create a new architectural element that implements the fusion of multiscale image features to improve classification accuracy in the case of a small volume of training data. This problem is typical for various applied tasks, including remote sensing data analysis. Various widely-used neural network classifiers (EfficientNet, MobileNet, Xception), both with and without a new informed block, are tested. It is demonstrated that on the open datasets UC Merced (remote sensing data) and Oxford Flowers (flower images), informed neural networks achieve a significant increase in accuracy for this class of tasks: the largest improvement in Top-1 Accuracy was 6.67% (mean accuracy without informing equals 87.3%), while Top-5 Accuracy increased by 1.49% (mean base accuracy value is 96.27%).
Keywords: probability-informed machine learning, factor analyzers, feature fusion, small data, image classification, neural networks.
Received: 30.09.2024
Accepted: 02.10.2024
English version:
Doklady Mathematics, 2024, Volume 110, Issue suppl. 1, Pages S35–S41
DOI: https://doi.org/10.1134/S106456242460204X
Bibliographic databases:
Document Type: Article
UDC: 004.852
Language: Russian
Citation: A. M. Dostovalova, A. K. Gorshenin, “Neural network image classifiers informed by factor analyzers”, Dokl. RAN. Math. Inf. Proc. Upr., 520:2 (2024), 41–48; Dokl. Math., 110:suppl. 1 (2024), S35–S41
Citation in format AMSBIB
\Bibitem{DosGor24}
\by A.~M.~Dostovalova, A.~K.~Gorshenin
\paper Neural network image classifiers informed by factor analyzers
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2024
\vol 520
\issue 2
\pages 41--48
\mathnet{http://mi.mathnet.ru/danma586}
\elib{https://elibrary.ru/item.asp?id=80287434}
\transl
\jour Dokl. Math.
\yr 2024
\vol 110
\issue suppl. 1
\pages S35--S41
\crossref{https://doi.org/10.1134/S106456242460204X}
Linking options:
  • https://www.mathnet.ru/eng/danma586
  • https://www.mathnet.ru/eng/danma/v520/i2/p41
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025