Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2024, Volume 520, Number 2, Pages 57–70
DOI: https://doi.org/10.31857/S2686954324700383
(Mi danma588)
 

This article is cited in 1 scientific paper (total in 1 paper)

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Unraveling the Hessian: a key to smooth convergence in loss function landscapes

N. S. Kiselev, A. V. Grabovoy

Moscow Institute of Physics and Technology, Moscow, Russia
Citations (1)
DOI: https://doi.org/10.31857/S2686954324700383
Abstract: The loss landscape of neural networks is a critical aspect of their training, and understanding its properties is essential for improving their performance. In this paper, we investigate how the loss surface changes when the sample size increases, a previously unexplored issue. We theoretically analyze the convergence of the loss landscape in a fully connected neural network and derive upper bounds for the difference in loss function values when adding a new object to the sample. Our empirical study confirms these results on various datasets, demonstrating the convergence of the loss function surface for image classification tasks. Our findings provide insights into the local geometry of neural loss landscapes and have implications for the development of sample size determination techniques.
Keywords: neural networks, loss function landscape, Hessian matrix, convergence analysis, image classification.
Received: 28.09.2024
Accepted: 02.10.2024
English version:
Doklady Mathematics, 2024, Volume 110, Issue suppl. 1, Pages S49–S61
DOI: https://doi.org/10.1134/S1064562424601987
Bibliographic databases:
Document Type: Article
UDC: 621.38
Language: Russian
Citation: N. S. Kiselev, A. V. Grabovoy, “Unraveling the Hessian: a key to smooth convergence in loss function landscapes”, Dokl. RAN. Math. Inf. Proc. Upr., 520:2 (2024), 57–70; Dokl. Math., 110:suppl. 1 (2024), S49–S61
Citation in format AMSBIB
\Bibitem{KisGra24}
\by N.~S.~Kiselev, A.~V.~Grabovoy
\paper Unraveling the Hessian: a key to smooth convergence in loss function landscapes
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2024
\vol 520
\issue 2
\pages 57--70
\mathnet{http://mi.mathnet.ru/danma588}
\elib{https://elibrary.ru/item.asp?id=80287436}
\transl
\jour Dokl. Math.
\yr 2024
\vol 110
\issue suppl. 1
\pages S49--S61
\crossref{https://doi.org/10.1134/S1064562424601987}
Linking options:
  • https://www.mathnet.ru/eng/danma588
  • https://www.mathnet.ru/eng/danma/v520/i2/p57
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025