Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2024, Volume 520, Number 2, Pages 71–84
DOI: https://doi.org/10.31857/S2686954324700395
(Mi danma589)
 

This article is cited in 2 scientific papers (total in 2 papers)

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Empirical approach to sample size estimation for testing of AI algorithms

M. R. Kodenkoab, T. M. Bobrovskayaa, R. V. Reshetnikova, K. M. Arzamasova, A. V. Vladzymyrskyya, O. V. Omelyanskayaa, Yu. A. Vasil'eva

a State budgetary Institution of Healthcare of the Moscow City "Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Department of Health", Moscow, Russia
b Bauman Moscow State Technical University, Moscow, Russia
Citations (2)
DOI: https://doi.org/10.31857/S2686954324700395
Abstract: Calculation of sample size is one of the basic tasks in the field of correct and objective testing of artificial intelligence (AI) algorithms. Existing approaches, despite their exhaustive theoretical justification, can give results that differ by an order of magnitude under the same initial conditions. Most of the input parameters for such methods are determined by the researcher intuitively or on the basis of relevant literature data in the subject area. Such uncertainty at the research planning stage is associated with a high risk of obtaining biased results, which is especially important to take into account when using AI algorithms for medical diagnosis. Within the framework of this work, an empirical study of the value of the minimum required sample size of radiology diagnostic studies to obtain an objective value of the AUROC metric was conducted. An algorithm for calculating the threshold value of sample size according to the criterion of no statistically significant changes in the metric value in case of increasing this size was developed and implemented in software format. Using datasets containing the results of testing of AI algorithms on mammographic and radiographic studies with the total volume of more than 300 thousand, the empirical threshold for the sample size from 30 to 25 thousand studies with different relative content of pathology – from 10 to 90% – was calculated. The proposed algorithm allows us to obtain results invariant to the balance of classes in the sample, the target value of AUROC, the modality of studies and the AI algorithm. The empirical value of the minimum sufficient sample size for testing the AI algorithm for binary classification, obtained by analysing over 2 million estimated values, is 400 studies. The obtained results can be used to solve the problems of development and testing of diagnostic tools, including AI algorithms.
Keywords: radiology, sample size, artificial intelligence, testing, ROC, AUC.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 123031500002-1
This article was prepared by a team of authors within the framework of the R and D project “Development of software for automatic generation of data sets of CT studies of the cardiovascular system with contrast suppression for training and testing algorithms based on artificial intelligence” (EGISU no. 123031500002-1).
Received: 30.09.2024
Accepted: 02.10.2024
English version:
Doklady Mathematics, 2024, Volume 110, Issue suppl. 1, Pages S62–S74
DOI: https://doi.org/10.1134/S1064562424602063
Bibliographic databases:
Document Type: Article
UDC: 004.8
Language: Russian
Citation: M. R. Kodenko, T. M. Bobrovskaya, R. V. Reshetnikov, K. M. Arzamasov, A. V. Vladzymyrskyy, O. V. Omelyanskaya, Yu. A. Vasil'ev, “Empirical approach to sample size estimation for testing of AI algorithms”, Dokl. RAN. Math. Inf. Proc. Upr., 520:2 (2024), 71–84; Dokl. Math., 110:suppl. 1 (2024), S62–S74
Citation in format AMSBIB
\Bibitem{KodBobRes24}
\by M.~R.~Kodenko, T.~M.~Bobrovskaya, R.~V.~Reshetnikov, K.~M.~Arzamasov, A.~V.~Vladzymyrskyy, O.~V.~Omelyanskaya, Yu.~A.~Vasil'ev
\paper Empirical approach to sample size estimation for testing of AI algorithms
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2024
\vol 520
\issue 2
\pages 71--84
\mathnet{http://mi.mathnet.ru/danma589}
\elib{https://elibrary.ru/item.asp?id=80287437}
\transl
\jour Dokl. Math.
\yr 2024
\vol 110
\issue suppl. 1
\pages S62--S74
\crossref{https://doi.org/10.1134/S1064562424602063}
Linking options:
  • https://www.mathnet.ru/eng/danma589
  • https://www.mathnet.ru/eng/danma/v520/i2/p71
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025