Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2024, Volume 520, Number 2, Pages 85–97
DOI: https://doi.org/10.31857/S2686954324700401
(Mi danma590)
 

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Generating survival interpretable trajectories and data

A. V. Konstantinov, S. R. Kirpichenko, L. V. Utkin

Higher School of Artificial Intelligence Technologies Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
DOI: https://doi.org/10.31857/S2686954324700401
Abstract: A new model for generating survival trajectories и data based on applying an autoencoder of a specific structure is proposed. It solves three tasks. First, it provides predictions in the form of the expected event time и the survival function for a new generated feature vector based on the Beran estimator. Second, the model generates additional data based on a given training set that would supplement the original dataset. Third, the most important, it generates a prototype time-dependent trajectory for an object, which characterizes how features of the object could be changed to achieve a different time to an event. The trajectory can be viewed as a type of the counterfactual explanation. The proposed model is robust during training и inference due to a specific weighting scheme incorporating into the variational autoencoder. The model also determines the censored indicators of new generated data by solving a classification task. The paper demonstrates the efficiency и properties of the proposed model using numerical experiments on synthetic и real datasets. The code of the algorithm implementing the proposed model is publicly available.
Keywords: survival analysis, Beran estimator, variational autoencoder, data generation, time-dependent trajectory.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FSEG-2024-0027
The work was supported by the state assignment of the Peter the Great St. Petersburg Polytechnic University (the topic “Development and research of machine learning models for solving fundamental problems of artificial intelligence for the fuel and energy complex”, project no. FSEG-2024-0027).
Received: 15.08.2024
Accepted: 02.10.2024
English version:
Doklady Mathematics, 2024, Volume 110, Issue suppl. 1, Pages S75–S86
DOI: https://doi.org/10.1134/S1064562424601999
Bibliographic databases:
Document Type: Article
UDC: 004.8
Language: Russian
Citation: A. V. Konstantinov, S. R. Kirpichenko, L. V. Utkin, “Generating survival interpretable trajectories and data”, Dokl. RAN. Math. Inf. Proc. Upr., 520:2 (2024), 85–97; Dokl. Math., 110:suppl. 1 (2024), S75–S86
Citation in format AMSBIB
\Bibitem{KonKirUtk24}
\by A.~V.~Konstantinov, S.~R.~Kirpichenko, L.~V.~Utkin
\paper Generating survival interpretable trajectories and data
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2024
\vol 520
\issue 2
\pages 85--97
\mathnet{http://mi.mathnet.ru/danma590}
\elib{https://elibrary.ru/item.asp?id=80287438}
\transl
\jour Dokl. Math.
\yr 2024
\vol 110
\issue suppl. 1
\pages S75--S86
\crossref{https://doi.org/10.1134/S1064562424601999}
Linking options:
  • https://www.mathnet.ru/eng/danma590
  • https://www.mathnet.ru/eng/danma/v520/i2/p85
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025