Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2024, Volume 520, Number 2, Pages 193–215
DOI: https://doi.org/10.31857/S2686954324700565
(Mi danma600)
 

This article is cited in 4 scientific papers (total in 4 papers)

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

About modifications of the loss function for the causal training of physics-informed neural networks

V. A. Eskinab, D. V. Davydovbc, E. D. Egorovade, A. O. Malkhanove, M. A. Akhukovb, M. E. Smorkalovef

a National Research Lobachevsky State University of Nizhny Novgorod
b Manpower IT Solutions, Nizhny Novgorod
c Mechanical Engineering Research Institute of RAS, Nizhny Novgorod
d Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia
e Huawei Nizhny Novgorod Research Center, Nizhny Novgorod, Russia
f Skolkovo Institute of Science and Technology, Moscow, Russia
Citations (4)
DOI: https://doi.org/10.31857/S2686954324700565
Abstract: A method is presented that allows to reduce a problem described by differential equations with initial and boundary conditions to a problem described only by differential equations which encapsulate initial and boundary conditions. It becomes possible to represent the loss function for physics-informed neural networks (PINNs) methodology in the form of a single term associated with modified differential equations. Thus eliminating the need to tune the scaling coefficients for the terms of loss function related to boundary and initial conditions. The weighted loss functions respecting causality were modified and new weighted loss functions, based on generalized functions, are derived. Numerical experiments have been carried out for a number of problems, demonstrating the accuracy of the proposed approaches. The neural network architecture was proposed for the Korteweg-De Vries equation, which is more relevant for this problem under consideration, and it demonstrates superior extrapolation of the solution in the space-time domain where training was not performed.
Keywords: deep learning, physics-informed neural networks, partial differential equations, predictive modeling, computational physics, nonlinear dynamics.
Received: 27.09.2024
Accepted: 02.10.2024
English version:
Doklady Mathematics, 2024, Volume 110, Issue suppl. 1, Pages S172–S192
DOI: https://doi.org/10.1134/S106456242460194X
Bibliographic databases:
Document Type: Article
UDC: 004.8
Language: Russian
Citation: V. A. Eskin, D. V. Davydov, E. D. Egorova, A. O. Malkhanov, M. A. Akhukov, M. E. Smorkalov, “About modifications of the loss function for the causal training of physics-informed neural networks”, Dokl. RAN. Math. Inf. Proc. Upr., 520:2 (2024), 193–215; Dokl. Math., 110:suppl. 1 (2024), S172–S192
Citation in format AMSBIB
\Bibitem{EskDavEgo24}
\by V.~A.~Eskin, D.~V.~Davydov, E.~D.~Egorova, A.~O.~Malkhanov, M.~A.~Akhukov, M.~E.~Smorkalov
\paper About modifications of the loss function for the causal training of physics-informed neural networks
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2024
\vol 520
\issue 2
\pages 193--215
\mathnet{http://mi.mathnet.ru/danma600}
\elib{https://elibrary.ru/item.asp?id=80287448}
\transl
\jour Dokl. Math.
\yr 2024
\vol 110
\issue suppl. 1
\pages S172--S192
\crossref{https://doi.org/10.1134/S106456242460194X}
Linking options:
  • https://www.mathnet.ru/eng/danma600
  • https://www.mathnet.ru/eng/danma/v520/i2/p193
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025