Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2024, Volume 520, Number 2, Pages 228–237
DOI: https://doi.org/10.31857/S2686954324700590
(Mi danma602)
 

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Stack more LLMs: efficient detection of machine-generated texts via perplexity approximation

G. M. Gritsaiab, I. A. Khabutdinovab, A. V. Grabovoyab

a Antiplagiat Company, Moscow, Russia
b Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
DOI: https://doi.org/10.31857/S2686954324700590
Abstract: The development of large language models (LLMs) is currently receiving a great amount of interest, but an update of text generation methods should entail a continuous update of methods for detecting machine-generated texts. Earlier, it has been highlighted that values of perplexity and log-probability are able to capture a measure of the difference between artificial and human-written texts. Using this observation, we define a new criterion based on these two values to judge whether a passage is generated from a given LLM. In this paper, we propose a novel efficient method that enables the detection of machine-generated fragments using an approximation of the LLM perplexity value based on pre-collected statistical language models. Approximation lends a hand in achieving high performance and quality metrics also on fragments from weights-closed LLMs. A large number of pre-collected statistical dictionaries results in an increased generalisation ability and the possibility to cover text sequences from the wild. Such approach is easy to update by only adding a new dictionary with latest model text outputs. The presented method has a high performance and achieves quality with an average of 94% recall in detecting generated fragments among texts from various open-source LLMs. In addition, the method is able to perform in milliseconds, which outperforms state-of-the-art models by a factor of thousands.
Keywords: machine-generated text, natural language processing, perplexity, large language models, detection of generated texts.
Received: 27.09.2024
Accepted: 02.10.2024
English version:
Doklady Mathematics, 2024, Volume 110, Issue suppl. 1, Pages S203–S211
DOI: https://doi.org/10.1134/S1064562424602075
Bibliographic databases:
Document Type: Article
UDC: 004.(89+93)
Language: Russian
Citation: G. M. Gritsai, I. A. Khabutdinov, A. V. Grabovoy, “Stack more LLMs: efficient detection of machine-generated texts via perplexity approximation”, Dokl. RAN. Math. Inf. Proc. Upr., 520:2 (2024), 228–237; Dokl. Math., 110:suppl. 1 (2024), S203–S211
Citation in format AMSBIB
\Bibitem{GriKhaGra24}
\by G.~M.~Gritsai, I.~A.~Khabutdinov, A.~V.~Grabovoy
\paper Stack more LLMs: efficient detection of machine-generated texts via perplexity approximation
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2024
\vol 520
\issue 2
\pages 228--237
\mathnet{http://mi.mathnet.ru/danma602}
\elib{https://elibrary.ru/item.asp?id=80287450}
\transl
\jour Dokl. Math.
\yr 2024
\vol 110
\issue suppl. 1
\pages S203--S211
\crossref{https://doi.org/10.1134/S1064562424602075}
Linking options:
  • https://www.mathnet.ru/eng/danma602
  • https://www.mathnet.ru/eng/danma/v520/i2/p228
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025