Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2024, Volume 520, Number 2, Pages 238–250
DOI: https://doi.org/10.31857/S2686954324700607
(Mi danma603)
 

This article is cited in 1 scientific paper (total in 1 paper)

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Neural network-based coronary dominance classification of RCA angiograms

I. Kruzhilovab, E. Ikryannikovc, A. Shadrind, R. Utegenovd, G. Zubkovaa, I. Bessonovd

a Sber AI Lab, Moscow, Russia
b National Research University "Moscow Power Engineering Institute", Moscow, Russia
c Artificial Intelligence Institute, MIREA, Moscow, Russia
d Tyumen Cardiology Research Center, Tomsk National Research Medical Center of Russian Academy of Science, Tyumen, Russia
Citations (1)
DOI: https://doi.org/10.31857/S2686954324700607
Abstract: Purpose. Coronary arterial dominance classification is essential for SYNTAX score estimation, which is a tool used to determine the complexity of coronary artery disease and guide patient selection toward optimal revascularization strategy. We developed coronary dominance classification algorithm based on the analysis of right coronary artery (RCA) angiograms using neural network Methods. We employed convolutional neural network ConvNext and Swin transformer for 2D image (frames) classification, along with a majority vote for cardio angiographic view classification. An auxiliary network was also used to detect irrelevant images which were then excluded from the data set.
Results. 5-fold cross validation gave the following dominance classification metrics ($p$ = 95%): macro recall = 93.1 $\pm$ 4.3%, accuracy = 93.5 $\pm$ 3.8%, macro F1 = 89.2 $\pm$ 5.6%. The most common case in which the model regularly failed was RCA occlusion, as it requires utilization of left coronary artery (LCA) information.
Conclusions. The use of machine learning approaches to classify coronary dominance based on RCA alone has been shown to be successful with satisfactory accuracy. However, for higher accuracy, it is necessary to utilize LCA information in the case of an occluded RCA and detect cases where there is high uncertainty.
Keywords: coronary dominance, angiography, RCA, right coronary artery, occlusion, normalized cross-entropy, noisy labeling.
Received: 27.09.2024
Accepted: 02.10.2024
English version:
Doklady Mathematics, 2024, Volume 110, Issue suppl. 1, Pages S212–S222
DOI: https://doi.org/10.1134/S1064562424602026
Bibliographic databases:
Document Type: Article
UDC: 004.93
Language: Russian
Citation: I. Kruzhilov, E. Ikryannikov, A. Shadrin, R. Utegenov, G. Zubkova, I. Bessonov, “Neural network-based coronary dominance classification of RCA angiograms”, Dokl. RAN. Math. Inf. Proc. Upr., 520:2 (2024), 238–250; Dokl. Math., 110:suppl. 1 (2024), S212–S222
Citation in format AMSBIB
\Bibitem{KruIkrSha24}
\by I.~Kruzhilov, E.~Ikryannikov, A.~Shadrin, R.~Utegenov, G.~Zubkova, I.~Bessonov
\paper Neural network-based coronary dominance classification of RCA angiograms
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2024
\vol 520
\issue 2
\pages 238--250
\mathnet{http://mi.mathnet.ru/danma603}
\elib{https://elibrary.ru/item.asp?id=80287451}
\transl
\jour Dokl. Math.
\yr 2024
\vol 110
\issue suppl. 1
\pages S212--S222
\crossref{https://doi.org/10.1134/S1064562424602026}
Linking options:
  • https://www.mathnet.ru/eng/danma603
  • https://www.mathnet.ru/eng/danma/v520/i2/p238
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025