Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2024, Volume 520, Number 2, Pages 267–283
DOI: https://doi.org/10.31857/S2686954324700632
(Mi danma606)
 

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

An empirical scrutinization of four crisp clustering methods with four distance metrics and one straightforward interpretation rule

T. A. Nalbandiana, S. A. Shalilehab

a Laboratory of Artificial Intelligence for Cognitive Sciences, HSE University, Moscow, Russia
b Sberbank of Russia, SberIndex, Moscow, Russia
DOI: https://doi.org/10.31857/S2686954324700632
Abstract: Clustering has always been in great demand by scientific and industrial communities. However, due to the lack of ground truth, interpreting its obtained results can be debatable. The current research provides an empirical benchmark on the efficiency of three popular and one recently proposed crisp clustering methods. To this end, we extensively analyzed these (four) methods by applying them to nine real-world and 420 synthetic datasets using four different values of $p$ in Minkowski distance. Furthermore, we validated a previously proposed yet not well-known straightforward rule to interpret the recovered clusters. Our computations showed (i) Nesterov gradient descent clustering is the most effective clustering method using our real-world data, while K-Means had edge over it using our synthetic data; (ii) Minkowski distance with $p$ = 1 is the most effective distance function, (iii) the investigated cluster interpretation rule is intuitive and valid.
Keywords: clustering, Minkowski distance, algorithms.
Funding agency Grant number
HSE Academic Fund Programme
Support from the Basic Research Program of the National Research University Higher School of Economics (HSE University) is gratefully acknowledged. This research was supported in part through computational resources of HPC facilities at HSE University.
Received: 27.09.2024
Accepted: 02.10.2024
English version:
Doklady Mathematics, 2024, Volume 110, Issue suppl. 1, Pages S236–S250
DOI: https://doi.org/10.1134/S1064562424602002
Bibliographic databases:
Document Type: Article
UDC: 004.891.3
Language: Russian
Citation: T. A. Nalbandian, S. A. Shalileh, “An empirical scrutinization of four crisp clustering methods with four distance metrics and one straightforward interpretation rule”, Dokl. RAN. Math. Inf. Proc. Upr., 520:2 (2024), 267–283; Dokl. Math., 110:suppl. 1 (2024), S236–S250
Citation in format AMSBIB
\Bibitem{NalSha24}
\by T.~A.~Nalbandian, S.~A.~Shalileh
\paper An empirical scrutinization of four crisp clustering methods with four distance metrics and one straightforward interpretation rule
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2024
\vol 520
\issue 2
\pages 267--283
\mathnet{http://mi.mathnet.ru/danma606}
\elib{https://elibrary.ru/item.asp?id=80287454}
\transl
\jour Dokl. Math.
\yr 2024
\vol 110
\issue suppl. 1
\pages S236--S250
\crossref{https://doi.org/10.1134/S1064562424602002}
Linking options:
  • https://www.mathnet.ru/eng/danma606
  • https://www.mathnet.ru/eng/danma/v520/i2/p267
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025