|
Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2025, Volume 521, Pages 5–10 DOI: https://doi.org/10.31857/S2686954325010016
(Mi danma613)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
MATHEMATICS
On the Zaremba problem for inhomogeneous $p$-Laplace equation with drift
Yu. A. Alkhutova, M. D. Surnachevb, A. G. Chechkinacd a Vladimir State University
b Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
c Lomonosov Moscow State University
d Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa
DOI:
https://doi.org/10.31857/S2686954325010016
Abstract:
A higher integrability of the gradient of a solution to the Zaremba problem in a bounded Lipschitz domain is proved for the inhomogeneous $p$-Laplace equation with drift.
Keywords:
Zaremba problem, Meyers estimates, $p$-capacity, imbedding theorems, higher integrability, critical indicator.
Citation:
Yu. A. Alkhutov, M. D. Surnachev, A. G. Chechkina, “On the Zaremba problem for inhomogeneous $p$-Laplace equation with drift”, Dokl. RAN. Math. Inf. Proc. Upr., 521 (2025), 5–10; Dokl. Math., 111:1 (2025), 1–5
Linking options:
https://www.mathnet.ru/eng/danma613 https://www.mathnet.ru/eng/danma/v521/p5
|
|