|
Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2025, Volume 521, Pages 38–42 DOI: https://doi.org/10.31857/S2686954325010066
(Mi danma618)
|
|
|
|
MATHEMATICS
On some number theoretic sum
V. V. Iudelevich Lomonosov Moscow State University
DOI:
https://doi.org/10.31857/S2686954325010066
Abstract:
We obtain an asymptotic formula for the sum $Q(x) = \sum_{n\leq x/r(n+1)\neq0}\frac{r(n)}{r(n+1)}$, $(x \to +\infty)$, where $r(n)$ denotes the number of representations of $n$ as a sum of two squares.
Keywords:
a sum of two squares, Dirichlet’s characters, the large sieve inequality, the dispersion method.
Citation:
V. V. Iudelevich, “On some number theoretic sum”, Dokl. RAN. Math. Inf. Proc. Upr., 521 (2025), 38–42; Dokl. Math., 111:1 (2025), 25–28
Linking options:
https://www.mathnet.ru/eng/danma618 https://www.mathnet.ru/eng/danma/v521/p38
|
|