Differentsial'nye Uravneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differentsial'nye Uravneniya, 2000, Volume 36, Number 3, Pages 336–344 (Mi de10108)  

This article is cited in 1 scientific paper (total in 1 paper)

Ordinary Differential Equations

Asymptotic behavior of the spectral measure of the operator family $-y''-\varepsilon xy$

A. S. Pechentsov, A. Yu. Popov

Lomonosov Moscow State University
Received: 17.03.1998
English version:
Differential Equations, 2000, Volume 36, Issue 3, Pages 377–387
DOI: https://doi.org/10.1007/BF02754457
Bibliographic databases:
Document Type: Article
UDC: 517.984.5
Language: Russian
Citation: A. S. Pechentsov, A. Yu. Popov, “Asymptotic behavior of the spectral measure of the operator family $-y''-\varepsilon xy$”, Differ. Uravn., 36:3 (2000), 336–344; Differ. Equ., 36:3 (2000), 377–387
Citation in format AMSBIB
\Bibitem{PecPop00}
\by A.~S.~Pechentsov, A.~Yu.~Popov
\paper Asymptotic behavior of the spectral measure of the operator family $-y''-\varepsilon xy$
\jour Differ. Uravn.
\yr 2000
\vol 36
\issue 3
\pages 336--344
\mathnet{http://mi.mathnet.ru/de10108}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1814309}
\transl
\jour Differ. Equ.
\yr 2000
\vol 36
\issue 3
\pages 377--387
\crossref{https://doi.org/10.1007/BF02754457}
Linking options:
  • https://www.mathnet.ru/eng/de10108
  • https://www.mathnet.ru/eng/de/v36/i3/p336
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025