Differentsial'nye Uravneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differentsial'nye Uravneniya, 2003, Volume 39, Number 12, Pages 1637–1644 (Mi de10962)  

This article is cited in 1 scientific paper (total in 1 paper)

Ordinary Differential Equations

A Theory of Dynamic Conflict Problems on Intersecting Sets

È. R. Smol'yakov

Lomonosov Moscow State University
Received: 10.06.2003
English version:
Differential Equations, 2003, Volume 39, Issue 12, Pages 1724–1731
DOI: https://doi.org/10.1023/B:DIEQ.0000023552.31670.08
Bibliographic databases:
Document Type: Article
UDC: 517.977.8
Language: Russian
Citation: È. R. Smol'yakov, “A Theory of Dynamic Conflict Problems on Intersecting Sets”, Differ. Uravn., 39:12 (2003), 1637–1644; Differ. Equ., 39:12 (2003), 1724–1731
Citation in format AMSBIB
\Bibitem{Smo03}
\by \`E.~R.~Smol'yakov
\paper A Theory of Dynamic Conflict Problems on Intersecting Sets
\jour Differ. Uravn.
\yr 2003
\vol 39
\issue 12
\pages 1637--1644
\mathnet{http://mi.mathnet.ru/de10962}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2154769}
\transl
\jour Differ. Equ.
\yr 2003
\vol 39
\issue 12
\pages 1724--1731
\crossref{https://doi.org/10.1023/B:DIEQ.0000023552.31670.08}
Linking options:
  • https://www.mathnet.ru/eng/de10962
  • https://www.mathnet.ru/eng/de/v39/i12/p1637
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:192
    Full-text PDF :82
    References:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026