Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2005, Volume 17, Issue 3, Pages 105–108
DOI: https://doi.org/10.4213/dm119
(Mi dm119)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the number of independent sets in damaged Cayley graphs

K. G. Omel'yanov
Full-text PDF (416 kB) Citations (3)
References:
Abstract: The Cayley graph generated by a set $A$ is the graph $\Gamma_{A}(V)$ on a set of positive integers $V$ such that a pair $(u,v)\in V\times V$ is an edge of the graph if and only if $|u-v|\in A$ or $u+v\in A$. We denote by $\mathcal G_2(n,m)$ the class of graphs $G=(V,E)$ such that $G$ is a union of chains and cycles and $|V|=n$, $|E|=m$. In this paper, we present an upper bound for the number of independent sets in Cayley graphs $\Gamma_A(V)$ such that $A=\{\lceil n/2\rceil-t, \lceil n/2\rceil-f\}$, $V\subseteq[\lfloor n/2\rfloor+1,\lfloor n/2\rfloor+t]\cup[n-t+1,n]$, where $n,t,f\in\mathbf N$ and $f<t<n/4$. We also describe the graph with the maximum number of independent sets in the family $\mathcal G_2(n,m)$.
This research was supported by the Russian Foundation for Basic Researches, grant 04–01–00359.
Received: 23.05.2005
English version:
Discrete Mathematics and Applications, 2005, Volume 15, Issue 4, Pages 361–364
DOI: https://doi.org/10.1515/156939205774464954
Bibliographic databases:
UDC: 519.6
Language: Russian
Citation: K. G. Omel'yanov, “On the number of independent sets in damaged Cayley graphs”, Diskr. Mat., 17:3 (2005), 105–108; Discrete Math. Appl., 15:4 (2005), 361–364
Citation in format AMSBIB
\Bibitem{Ome05}
\by K.~G.~Omel'yanov
\paper On the number of independent sets in damaged Cayley graphs
\jour Diskr. Mat.
\yr 2005
\vol 17
\issue 3
\pages 105--108
\mathnet{http://mi.mathnet.ru/dm119}
\crossref{https://doi.org/10.4213/dm119}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2195654}
\zmath{https://zbmath.org/?q=an:1079.05069}
\elib{https://elibrary.ru/item.asp?id=9135443}
\transl
\jour Discrete Math. Appl.
\yr 2005
\vol 15
\issue 4
\pages 361--364
\crossref{https://doi.org/10.1515/156939205774464954}
Linking options:
  • https://www.mathnet.ru/eng/dm119
  • https://doi.org/10.4213/dm119
  • https://www.mathnet.ru/eng/dm/v17/i3/p105
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025