Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2014, Volume 26, Issue 3, Pages 30–44
DOI: https://doi.org/10.4213/dm1288
(Mi dm1288)
 

This article is cited in 1 scientific paper (total in 1 paper)

On a statistic for testing the homogeneity of polynomial samples

A. M. Zubkov, B. I. Selivanov

Steklov Mathematical Institute of Russian Academy of Sciences
Full-text PDF (495 kB) Citations (1)
References:
Abstract: We consider $M \geqslant 2$ independent polynomial samples with $N$ outcomes. For the case when $M$ and $N$ are fixed but sizes of samples tend to infinity we find limit distributions of a new statistic ${\sigma^2}$: chi-square distribution with $(M - 1)(N - 1)$ degrees of freedom if samples are statistically homogeneous, non-central chi-square distribution with the same number of degrees of freedom if samples are «convergent» to homogeneous ones, and normal distribution if samples are statistically nonhomogeneous.
Keywords: polynomial samples, homogeneity test, non-central chi-square distribution.
Received: 26.12.2013
English version:
Discrete Mathematics and Applications, 2015, Volume 25, Issue 2, Pages 109–120
DOI: https://doi.org/10.1515/dma-2015-0011
Bibliographic databases:
Document Type: Article
UDC: 579.234.3+519.214
Language: Russian
Citation: A. M. Zubkov, B. I. Selivanov, “On a statistic for testing the homogeneity of polynomial samples”, Diskr. Mat., 26:3 (2014), 30–44; Discrete Math. Appl., 25:2 (2015), 109–120
Citation in format AMSBIB
\Bibitem{ZubSel14}
\by A.~M.~Zubkov, B.~I.~Selivanov
\paper On a statistic for testing the homogeneity of polynomial samples
\jour Diskr. Mat.
\yr 2014
\vol 26
\issue 3
\pages 30--44
\mathnet{http://mi.mathnet.ru/dm1288}
\crossref{https://doi.org/10.4213/dm1288}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3309398}
\elib{https://elibrary.ru/item.asp?id=22834144}
\transl
\jour Discrete Math. Appl.
\yr 2015
\vol 25
\issue 2
\pages 109--120
\crossref{https://doi.org/10.1515/dma-2015-0011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366853400005}
\elib{https://elibrary.ru/item.asp?id=24023358}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84927917713}
Linking options:
  • https://www.mathnet.ru/eng/dm1288
  • https://doi.org/10.4213/dm1288
  • https://www.mathnet.ru/eng/dm/v26/i3/p30
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025