Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2014, Volume 26, Issue 3, Pages 45–64
DOI: https://doi.org/10.4213/dm1289
(Mi dm1289)
 

This article is cited in 19 scientific papers (total in 19 papers)

Application of non-associative groupoids to the realization of an open key distribution procedure

S. Yu. Katysheva, V. T. Markovb, A. A. Nechaevc

a LLC "Certification Research Center"
b M. V. Lomonosov Moscow State University
c Academy of Criptography of Russia
References:
Abstract: We investigate the possibility to use non-associative groupoids in the realization of an open key distribution procedure based on a generalization of the well known Diffie–Hellman algorithm. We prove the existence of non-associative groupoids which are simultaneously power commuting and not power-associative.
Keywords: open key distribution, Diffie–Hellman algorithm, non-associative groupoids, medial quasigroups, finite dimensional algebras.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-6260.2012.10
Академия криптографии РФ
Received: 11.05.2014
English version:
Discrete Mathematics and Applications, 2015, Volume 25, Issue 1, Pages 9–24
DOI: https://doi.org/10.1515/dma-2015-0002
Bibliographic databases:
Document Type: Article
UDC: 512.548.2
Language: Russian
Citation: S. Yu. Katyshev, V. T. Markov, A. A. Nechaev, “Application of non-associative groupoids to the realization of an open key distribution procedure”, Diskr. Mat., 26:3 (2014), 45–64; Discrete Math. Appl., 25:1 (2015), 9–24
Citation in format AMSBIB
\Bibitem{KatMarNec14}
\by S.~Yu.~Katyshev, V.~T.~Markov, A.~A.~Nechaev
\paper Application of non-associative groupoids to the realization of an open key distribution procedure
\jour Diskr. Mat.
\yr 2014
\vol 26
\issue 3
\pages 45--64
\mathnet{http://mi.mathnet.ru/dm1289}
\crossref{https://doi.org/10.4213/dm1289}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3309399}
\elib{https://elibrary.ru/item.asp?id=22834145}
\transl
\jour Discrete Math. Appl.
\yr 2015
\vol 25
\issue 1
\pages 9--24
\crossref{https://doi.org/10.1515/dma-2015-0002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366852600002}
\elib{https://elibrary.ru/item.asp?id=24009552}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84923240991}
Linking options:
  • https://www.mathnet.ru/eng/dm1289
  • https://doi.org/10.4213/dm1289
  • https://www.mathnet.ru/eng/dm/v26/i3/p45
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025