Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2015, Volume 27, Issue 4, Pages 120–132
DOI: https://doi.org/10.4213/dm1351
(Mi dm1351)
 

This article is cited in 1 scientific paper (total in 1 paper)

Functions without short implicents. Part II: Construction

P. V. Roldugin, A. V. Tarasov

Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)
References:
Abstract: This paper is a continuation of the paper ‘Functions without short implicents. Part I: lower estimates of weights’. In Part II we propose various methods of construction of $n$-place Boolean functions not admitting implicents of $k$ variables. The first of the methods proposed is based on the gradient algorithm, the second and the third ones depend on a certain combinatorial principle of construction, while the fourth method is based on a random choice of elements in the function support. The above methods have different efficiency depending on the value of $k$. We give upper estimates for the minimal value $w\left( {n,\;k} \right)$ of weights of the so-constructed functions. Together with the lower estimates of $w\left( {n,\;k} \right)$ from the first part of the paper this allows us to obtain an asymptotically sharp estimate $w\left( {n,\;k} \right) = \Theta \left( {\ln n} \right)$ as $n \to \infty$.
Keywords: Boolean functions, implicents, methods of construction of functions, weight of a Boolean function.
Received: 27.01.2015
English version:
Discrete Mathematics and Applications, 2016, Volume 26, Issue 3, Pages 165–174
DOI: https://doi.org/10.1515/dma-2016-0014
Bibliographic databases:
Document Type: Article
UDC: 519.571
Language: Russian
Citation: P. V. Roldugin, A. V. Tarasov, “Functions without short implicents. Part II: Construction”, Diskr. Mat., 27:4 (2015), 120–132; Discrete Math. Appl., 26:3 (2016), 165–174
Citation in format AMSBIB
\Bibitem{RolTar15}
\by P.~V.~Roldugin, A.~V.~Tarasov
\paper Functions without short implicents. Part II: Construction
\jour Diskr. Mat.
\yr 2015
\vol 27
\issue 4
\pages 120--132
\mathnet{http://mi.mathnet.ru/dm1351}
\crossref{https://doi.org/10.4213/dm1351}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3497376}
\elib{https://elibrary.ru/item.asp?id=24849944}
\transl
\jour Discrete Math. Appl.
\yr 2016
\vol 26
\issue 3
\pages 165--174
\crossref{https://doi.org/10.1515/dma-2016-0014}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000384440200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84979892898}
Linking options:
  • https://www.mathnet.ru/eng/dm1351
  • https://doi.org/10.4213/dm1351
  • https://www.mathnet.ru/eng/dm/v27/i4/p120
    Cycle of papers
    This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:568
    Full-text PDF :206
    References:116
    First page:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025