Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2017, Volume 29, Issue 1, Pages 136–155
DOI: https://doi.org/10.4213/dm1411
(Mi dm1411)
 

This article is cited in 2 scientific papers (total in 2 papers)

Limit theorems for the logarithm of the order of a random $A$-mapping

A. L. Yakymiv

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: Let $\mathfrak S_n$ be a semigroup of mappings of a set $X$ with $n$ elements into itself, $A$ be some fixed subset of the set $N$ of natural numbers, and $V_n(A)$ be a set of mappings from $\mathfrak S_n$, with lengths of cycles belonging to $A$. The mappings from $V_n(A)$ are called $A$-mappings. We suppose that the set $A$ has an asymptotic density $\varrho>0$, and that $|k\colon k\leq n,\ k\in A,\ m-k\in A|/n\to\varrho^2$ as $n\to\infty$ uniformly over $m\in[n,Cn]$ for each constant $C>1$. A number $M(\alpha)$ of different elements in a set $\{\alpha,\ \alpha^2,\ \alpha^3,\dots\}$ is called an order of mapping $\alpha\in\mathfrak S_n$. Consider a random mapping $\sigma=\sigma_n(A)$ having uniform distribution on $V_n(A)$. In the present paper it is shown that random variable $\ln M(\sigma_n(A))$ is asymptotically normal with mean $l(n)=\sum_{k\in A(\sqrt{n})}\ln(k)/{k}$ and variance $\varrho\ln^3(n)/24$, where $A(t)=\{k\colon k\in A,\ k\leq t\},\ t>0$. For the case $A=N$ this result was proved by B. Harris in 1973.
Keywords: random $A$-mappings, order of $A$-mapping, cyclic points, contours, trees, height of random\linebreak$A$-mapping, random $A$-permutations.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00318_а
This study was supported by the Russian Foundation for Basic Research, grant 14-01-00318.
Received: 28.07.2016
Revised: 21.11.2016
English version:
Discrete Mathematics and Applications, 2017, Volume 27, Issue 5, Pages 325–338
DOI: https://doi.org/10.1515/dma-2017-0034
Bibliographic databases:
Document Type: Article
UDC: 519.212.2
Language: Russian
Citation: A. L. Yakymiv, “Limit theorems for the logarithm of the order of a random $A$-mapping”, Diskr. Mat., 29:1 (2017), 136–155; Discrete Math. Appl., 27:5 (2017), 325–338
Citation in format AMSBIB
\Bibitem{Yak17}
\by A.~L.~Yakymiv
\paper Limit theorems for the logarithm of the order of a random $A$-mapping
\jour Diskr. Mat.
\yr 2017
\vol 29
\issue 1
\pages 136--155
\mathnet{http://mi.mathnet.ru/dm1411}
\crossref{https://doi.org/10.4213/dm1411}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3771057}
\elib{https://elibrary.ru/item.asp?id=28405141}
\transl
\jour Discrete Math. Appl.
\yr 2017
\vol 27
\issue 5
\pages 325--338
\crossref{https://doi.org/10.1515/dma-2017-0034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000414954500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85031789597}
Linking options:
  • https://www.mathnet.ru/eng/dm1411
  • https://doi.org/10.4213/dm1411
  • https://www.mathnet.ru/eng/dm/v29/i1/p136
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:701
    Full-text PDF :133
    References:113
    First page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025