Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2018, Volume 30, Issue 2, Pages 120–137
DOI: https://doi.org/10.4213/dm1449
(Mi dm1449)
 

This article is cited in 4 scientific papers (total in 4 papers)

On the complexity of bounded-depth circuits and formulas over the basis of fan-in gates

I. S. Sergeev

Research Institute "Kvant"
References:
Abstract: We obtain estimates for the complexity of the implementation of $n$-place Boolean functions by circuits and formulas built of unbounded fan-in conjunction and disjunction gates and either negation gates or negations of variables as inputs. Restrictions on the depth of circuits and formulas are imposed. In a number of cases, the estimates obtained in the paper are shown to be asymptotically sharp. In particular, for the complexity of circuits with variables and their negations on inputs, the Shannon function is asymptotically estimated as $2\cdot2^{n/2}$; this estimate is attained on depth-3 circuits.
Keywords: bounded-depth circuits, complexity, Boolean cube partitions.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00485а
Received: 14.08.2017
Revised: 12.03.2018
English version:
Discrete Mathematics and Applications, 2019, Volume 29, Issue 4, Pages 241–254
DOI: https://doi.org/10.1515/dma-2019-0022
Bibliographic databases:
Document Type: Article
UDC: 519.716
Language: Russian
Citation: I. S. Sergeev, “On the complexity of bounded-depth circuits and formulas over the basis of fan-in gates”, Diskr. Mat., 30:2 (2018), 120–137; Discrete Math. Appl., 29:4 (2019), 241–254
Citation in format AMSBIB
\Bibitem{Ser18}
\by I.~S.~Sergeev
\paper On the complexity of bounded-depth circuits and formulas over the basis of fan-in gates
\jour Diskr. Mat.
\yr 2018
\vol 30
\issue 2
\pages 120--137
\mathnet{http://mi.mathnet.ru/dm1449}
\crossref{https://doi.org/10.4213/dm1449}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3808081}
\elib{https://elibrary.ru/item.asp?id=34940594}
\transl
\jour Discrete Math. Appl.
\yr 2019
\vol 29
\issue 4
\pages 241--254
\crossref{https://doi.org/10.1515/dma-2019-0022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000481416500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071004651}
Linking options:
  • https://www.mathnet.ru/eng/dm1449
  • https://doi.org/10.4213/dm1449
  • https://www.mathnet.ru/eng/dm/v30/i2/p120
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:584
    Full-text PDF :102
    References:80
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025