Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2020, Volume 32, Issue 4, Pages 103–119
DOI: https://doi.org/10.4213/dm1625
(Mi dm1625)
 

Group service system with three queues and load balancing

M. P. Savelov

Novosibirsk State University
References:
Abstract: A group service system for three queues is considered. At each time $t = 1, 2, \ldots$, with some probability, a customer enters the system, selects randomly two queues, and goes to the shorter one. At each moment such that there is at least one customer in each queue, each queue performs instantly the service of one customer. By means of Lyapunov functions, a criterion for the ergodicity of the Markov chain corresponding to this queuing system is established. The limiting joint distribution of queue lengths is found, and the connection with the problem of balanced allocations of particles into cells is described. In the corresponding problem of balanced allocation of particles, the limiting distribution of the range is found, i. e. the difference between the maximal and minimal numbers of particles in cells.
Keywords: queue systems with balanced load, balanced allocations of particles into cells, choosing the shortest queue, range, ergodicity, Markov chain, Lyapunov function.
Funding agency Grant number
Russian Science Foundation 17-11-01173
Received: 31.08.2020
English version:
Discrete Mathematics and Applications, 2022, Volume 32, Issue 4, Pages 219–231
DOI: https://doi.org/10.1515/dma-2022-0019
Bibliographic databases:
Document Type: Article
UDC: 519.217.2+519.218.31
Language: Russian
Citation: M. P. Savelov, “Group service system with three queues and load balancing”, Diskr. Mat., 32:4 (2020), 103–119; Discrete Math. Appl., 32:4 (2022), 219–231
Citation in format AMSBIB
\Bibitem{Sav20}
\by M.~P.~Savelov
\paper Group service system with three queues and load balancing
\jour Diskr. Mat.
\yr 2020
\vol 32
\issue 4
\pages 103--119
\mathnet{http://mi.mathnet.ru/dm1625}
\crossref{https://doi.org/10.4213/dm1625}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4184793}
\transl
\jour Discrete Math. Appl.
\yr 2022
\vol 32
\issue 4
\pages 219--231
\crossref{https://doi.org/10.1515/dma-2022-0019}
Linking options:
  • https://www.mathnet.ru/eng/dm1625
  • https://doi.org/10.4213/dm1625
  • https://www.mathnet.ru/eng/dm/v32/i4/p103
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:345
    Full-text PDF :76
    References:54
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025