Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2023, Volume 35, Issue 3, Pages 5–19
DOI: https://doi.org/10.4213/dm1776
(Mi dm1776)
 

This article is cited in 1 scientific paper (total in 1 paper)

Limit theorem for stationary distribution of a critical controlled branching process with immigration

V. I. Vinokurov

Academy of Cryptography of Russian Federation
Full-text PDF (464 kB) Citations (1)
References:
Abstract: We consider the sequence $\{{\xi_{n,t}}\}_{t\geq1} $ of controlled critical branching processes with immigration, where $n=1,2,\ldots$ is an integer parameter limiting the population size. It is shown that for $n\rightarrow\infty $ the stationary distributions of considered branching processes normalized by $\sqrt{n}$ converge to the distribution of a random variable whose square has a gamma distribution.
Keywords: controlled branching processes, Markov chain, stationary distribution, limit theorem, gamma distribution, the method of moments } In conclusion, the author expresses his sincere gratitude to A.M. Zubkov for his attention to the work and valuable comments. \begin{thebibliography}{99.
Received: 23.11.2022
Published: 29.08.2023
English version:
Discrete Mathematics and Applications, 2023, Volume 33, Issue 5, Pages 325–337
DOI: https://doi.org/10.1515/dma-2023-0030
Document Type: Article
UDC: 519.218.23
Language: Russian
Citation: V. I. Vinokurov, “Limit theorem for stationary distribution of a critical controlled branching process with immigration”, Diskr. Mat., 35:3 (2023), 5–19; Discrete Math. Appl., 33:5 (2023), 325–337
Citation in format AMSBIB
\Bibitem{Vin23}
\by V.~I.~Vinokurov
\paper Limit theorem for stationary distribution of a critical controlled branching process with immigration
\jour Diskr. Mat.
\yr 2023
\vol 35
\issue 3
\pages 5--19
\mathnet{http://mi.mathnet.ru/dm1776}
\crossref{https://doi.org/10.4213/dm1776}
\transl
\jour Discrete Math. Appl.
\yr 2023
\vol 33
\issue 5
\pages 325--337
\crossref{https://doi.org/10.1515/dma-2023-0030}
Linking options:
  • https://www.mathnet.ru/eng/dm1776
  • https://doi.org/10.4213/dm1776
  • https://www.mathnet.ru/eng/dm/v35/i3/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025