Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2023, Volume 35, Issue 3, Pages 20–36
DOI: https://doi.org/10.4213/dm1784
(Mi dm1784)
 

This article is cited in 2 scientific papers (total in 2 papers)

Branching processes in random environment with freezing

I. D. Korshunov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: It is well known that a branching process in random environment (BPRE) can be analyzed via the associated random walk
\begin{equation*}S_n = \xi_1 + \dotsb + \xi_n,\end{equation*}
where $\xi_k = \ln \varphi_{\eta_k}'(1)$. Here $\{ \eta_k \}_{k = 1}^{\infty}$ is the random environment and $\varphi_x (t)$ is the generating function of the number of descendants of a particle for given environment $x$. We study the probability of extinction of a branching process in random environment with freezing: in constrast to classic BPRE, in this process every state $\eta_k$ of the environment lasts for given number $\tau_k$ of generations. It turns out that this variant of BPRE is also closely related to a random walk
\begin{equation*}S_n = \tau_1 \xi_1 + \dotsb + \tau_n \xi_n.\end{equation*}
We find several sufficient conditions for extinction probability of such process to be one or less than one correspondingly.
Keywords: branching processes, random environment, extinction probability, associated random walk.
Funding agency Grant number
Russian Science Foundation 19-11-00111-П
The work was supported by the Russian Science Foundation under grant no. 19-11-00111-П, https://rscf.ru/en/project/19-11-00111/, and performed at Steklov Mathematical Institute of Russian Academy of Sciences.
Received: 12.06.2023
Published: 29.08.2023
English version:
Discrete Mathematics and Applications, 2025, Volume 35, Issue 4, Pages 235–247
DOI: https://doi.org/10.1515/dma-2025-0018
Bibliographic databases:
Document Type: Article
UDC: 519.218.27
Language: Russian
Citation: I. D. Korshunov, “Branching processes in random environment with freezing”, Diskr. Mat., 35:3 (2023), 20–36; Discrete Math. Appl., 35:4 (2025), 235–247
Citation in format AMSBIB
\Bibitem{Kor23}
\by I.~D.~Korshunov
\paper Branching processes in random environment with freezing
\jour Diskr. Mat.
\yr 2023
\vol 35
\issue 3
\pages 20--36
\mathnet{http://mi.mathnet.ru/dm1784}
\crossref{https://doi.org/10.4213/dm1784}
\transl
\jour Discrete Math. Appl.
\yr 2025
\vol 35
\issue 4
\pages 235--247
\crossref{https://doi.org/10.1515/dma-2025-0018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001572175500004}
Linking options:
  • https://www.mathnet.ru/eng/dm1784
  • https://doi.org/10.4213/dm1784
  • https://www.mathnet.ru/eng/dm/v35/i3/p20
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:342
    Full-text PDF :78
    References:84
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025