Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2023, Volume 35, Issue 4, Pages 115–125
DOI: https://doi.org/10.4213/dm1803
(Mi dm1803)
 

This article is cited in 2 scientific papers (total in 2 papers)

Describing the closed class of polynomial functions modulo a power of a prime number by a relation

S. N. Selezneva

Lomonosov Moscow State University
Full-text PDF (464 kB) Citations (2)
References:
Abstract: The closed class $\operatorname{Pol}_{p^m}$ in $p^m$-valued logic, where $p$ is a prime number, $1 \leqslant m \leqslant p$, is studied. This class consists of all functions that are polynomial modulo $p^m$. Criteria for polynomiality modulo $p^m$ of a function in $p^m$-valued logic are found. A relation describing the class $\operatorname{Pol}_{p^m}$ is obtained in an explicit form.
Keywords: function of many-valued logic, residue ring, polynomial, closed class, relation.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-284
The work is supported by the Ministry of Education and Science of the Russian Federation as a part of the program for the Moscow Center for Fundamental and Applied Mathematics, project no. 075-15-2022-284.
Received: 22.10.2023
Published: 28.11.2023
English version:
Discrete Mathematics and Applications, 2025, Volume 35, Issue 2, Pages 125–133
DOI: https://doi.org/10.1515/dma-2025-0008
Document Type: Article
UDC: 519.716+519.716.5
Language: Russian
Citation: S. N. Selezneva, “Describing the closed class of polynomial functions modulo a power of a prime number by a relation”, Diskr. Mat., 35:4 (2023), 115–125; Discrete Math. Appl., 35:2 (2025), 125–133
Citation in format AMSBIB
\Bibitem{Sel23}
\by S.~N.~Selezneva
\paper Describing the closed class of polynomial functions modulo a power of a prime number by a relation
\jour Diskr. Mat.
\yr 2023
\vol 35
\issue 4
\pages 115--125
\mathnet{http://mi.mathnet.ru/dm1803}
\crossref{https://doi.org/10.4213/dm1803}
\transl
\jour Discrete Math. Appl.
\yr 2025
\vol 35
\issue 2
\pages 125--133
\crossref{https://doi.org/10.1515/dma-2025-0008}
Linking options:
  • https://www.mathnet.ru/eng/dm1803
  • https://doi.org/10.4213/dm1803
  • https://www.mathnet.ru/eng/dm/v35/i4/p115
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025