Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2003, Volume 15, Issue 2, Pages 128–137
DOI: https://doi.org/10.4213/dm200
(Mi dm200)
 

This article is cited in 7 scientific papers (total in 7 papers)

Limit theorems for the number of points of a given set covered by a random linear subspace

V. G. Mikhailov
References:
Abstract: Let $V^T$ be the $T$-dimensional linear space over a finite field $K$, and let $B_1,\ldots,B_m$ be subsets of $V^T$ not containing the zero-point. Let a subspace $L$ be chosen randomly and equiprobably from the set of all $n$-dimensional linear subspaces of $V^T$. We consider the number $\mu(B_i)$ of points in the intersections $L\cap B_i$, $i=1,\ldots,m$. We study the limit behaviour of the distribution of the vector $(\mu(B_1),\ldots,\mu(B_m))$ as $T,n\to \infty$ and the sets vary in such a way that the means of $\mu(B_i)$ tend to finite limits. The field $K$ is fixed. We prove that this random vector has in limit the compound Poisson distribution. Necessary and sufficient conditions for asymptotic independency of the random variables $\mu(B_1),\ldots,\mu(B_m)$ are derived.
This research was supported by the Russian Foundation for Basic Research, grants 02–01–00266 and 00–15–96136.
Received: 08.01.2003
English version:
Discrete Mathematics and Applications, 2003, Volume 13, Issue 2, Pages 179–188
DOI: https://doi.org/10.1515/156939203322109131
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: V. G. Mikhailov, “Limit theorems for the number of points of a given set covered by a random linear subspace”, Diskr. Mat., 15:2 (2003), 128–137; Discrete Math. Appl., 13:2 (2003), 179–188
Citation in format AMSBIB
\Bibitem{Mik03}
\by V.~G.~Mikhailov
\paper Limit theorems for the number of points of a given set covered by a random linear subspace
\jour Diskr. Mat.
\yr 2003
\vol 15
\issue 2
\pages 128--137
\mathnet{http://mi.mathnet.ru/dm200}
\crossref{https://doi.org/10.4213/dm200}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2006682}
\zmath{https://zbmath.org/?q=an:1046.60010}
\transl
\jour Discrete Math. Appl.
\yr 2003
\vol 13
\issue 2
\pages 179--188
\crossref{https://doi.org/10.1515/156939203322109131}
Linking options:
  • https://www.mathnet.ru/eng/dm200
  • https://doi.org/10.4213/dm200
  • https://www.mathnet.ru/eng/dm/v15/i2/p128
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:560
    Full-text PDF :278
    References:83
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025