Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2002, Volume 14, Issue 3, Pages 23–41
DOI: https://doi.org/10.4213/dm251
(Mi dm251)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the number of bijunctive functions that are invariant under a given permutation

P. V. Roldugin, A. V. Tarasov
References:
Abstract: The class of Boolean bijunctive functions is one of the Sheffer classes. The main property which makes investigations of bijunctive functions important is the property that the problem of testing the consistency of a system of equations over a Sheffer class of functions is of a polynomial complexity (see, for example, [1–4]). In this paper, we estimate the number of bijunctive functions containing a given permutation in their inertia groups with respect to the symmetric group. In particular, we describe properties and find the number of bijunctive functions invariant with respect to a unicyclic permutation of the variables.
Received: 25.04.2002
Bibliographic databases:
UDC: 519.7
Language: Russian
Citation: P. V. Roldugin, A. V. Tarasov, “On the number of bijunctive functions that are invariant under a given permutation”, Diskr. Mat., 14:3 (2002), 23–41; Discrete Math. Appl., 12:4 (2002), 337–356
Citation in format AMSBIB
\Bibitem{RolTar02}
\by P.~V.~Roldugin, A.~V.~Tarasov
\paper On the number of bijunctive functions that are invariant under a given permutation
\jour Diskr. Mat.
\yr 2002
\vol 14
\issue 3
\pages 23--41
\mathnet{http://mi.mathnet.ru/dm251}
\crossref{https://doi.org/10.4213/dm251}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1952776}
\zmath{https://zbmath.org/?q=an:1088.68613}
\transl
\jour Discrete Math. Appl.
\yr 2002
\vol 12
\issue 4
\pages 337--356
Linking options:
  • https://www.mathnet.ru/eng/dm251
  • https://doi.org/10.4213/dm251
  • https://www.mathnet.ru/eng/dm/v14/i3/p23
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025