Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2002, Volume 14, Issue 3, Pages 78–94
DOI: https://doi.org/10.4213/dm256
(Mi dm256)
 

Automaton mappings of words that propagate distortions in Hamming and Levenshteĭn metrics no more than $K$ times

A. V. Babash
References:
Abstract: Let $I$ and $O$ be finite alphabets. For a finite alphabet $\Omega$, let $\Omega^*$ denote the set of all words of finite lengths over the alphabet $\Omega$. In this paper we give a complete description of all automaton mappings of the set $I^*$ into $O^*$ which multiply symbol replacement errors in words by a factor not exceeding $K$. We give a complete description of injective automaton mappings of the set $I^*$ into $O^*$ which multiply symbol skip errors by a factor no greater than $K$. A similar result is obtained for the deletion and insertion metric.
Received: 18.09.2001
Bibliographic databases:
UDC: 519.7
Language: Russian
Citation: A. V. Babash, “Automaton mappings of words that propagate distortions in Hamming and Levenshteĭn metrics no more than $K$ times”, Diskr. Mat., 14:3 (2002), 78–94; Discrete Math. Appl., 12:4 (2002), 375–392
Citation in format AMSBIB
\Bibitem{Bab02}
\by A.~V.~Babash
\paper Automaton mappings of words that propagate distortions in Hamming and Levenshte\u\i n metrics no more than $K$ times
\jour Diskr. Mat.
\yr 2002
\vol 14
\issue 3
\pages 78--94
\mathnet{http://mi.mathnet.ru/dm256}
\crossref{https://doi.org/10.4213/dm256}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1952781}
\zmath{https://zbmath.org/?q=an:1088.68628}
\transl
\jour Discrete Math. Appl.
\yr 2002
\vol 12
\issue 4
\pages 375--392
Linking options:
  • https://www.mathnet.ru/eng/dm256
  • https://doi.org/10.4213/dm256
  • https://www.mathnet.ru/eng/dm/v14/i3/p78
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:502
    Full-text PDF :323
    References:57
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025