Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2002, Volume 14, Issue 3, Pages 143–148
DOI: https://doi.org/10.4213/dm261
(Mi dm261)
 

This article is cited in 4 scientific papers (total in 4 papers)

A double exponential law for maximal branching processes

A. V. Lebedev
Full-text PDF (450 kB) Citations (4)
References:
Abstract: We consider maximal branching processes defined by the recurrence relation
$$ Z_{n+1}=\bigvee_{m=1}^{Z_n}\xi_{m,n}, $$
where $\vee$ stands for the operation of taking maximum, $\xi_{m,n}$, $m\ge 1$, $n\ge 0$, are independent with distribution function $F$ on $\mathbf Z_+$.
We prove limit theorems for stationary distributions of the processes $\{Z^{(N)}_n\}$ with the distribution functions $F^{(N)}(x)=F^N(x)$ as $N\to\infty$ in the case where $F$ belongs to the domain of attraction of the double exponential law.
This research was supported by the Russian Foundation for Basic Research, grant 00–01–00131.
Received: 13.09.2001
Revised: 20.12.2001
Bibliographic databases:
UDC: 519.218
Language: Russian
Citation: A. V. Lebedev, “A double exponential law for maximal branching processes”, Diskr. Mat., 14:3 (2002), 143–148; Discrete Math. Appl., 12:4 (2002), 415–420
Citation in format AMSBIB
\Bibitem{Leb02}
\by A.~V.~Lebedev
\paper A double exponential law for maximal branching processes
\jour Diskr. Mat.
\yr 2002
\vol 14
\issue 3
\pages 143--148
\mathnet{http://mi.mathnet.ru/dm261}
\crossref{https://doi.org/10.4213/dm261}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1952786}
\zmath{https://zbmath.org/?q=an:1045.60091}
\transl
\jour Discrete Math. Appl.
\yr 2002
\vol 12
\issue 4
\pages 415--420
Linking options:
  • https://www.mathnet.ru/eng/dm261
  • https://doi.org/10.4213/dm261
  • https://www.mathnet.ru/eng/dm/v14/i3/p143
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025