Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 1998, Volume 10, Issue 1, Pages 127–140
DOI: https://doi.org/10.4213/dm415
(Mi dm415)
 

On combinatorial functions related to the Bürman–Lagrange series. Quasi-orthogonality relations

B. I. Selivanov
Abstract: Let
$$ g(t)=\sum_{n=m}^\infty g_n\frac{t^n}{n!},\quad g_m\ne 0,\quad m\ge 1, $$
be a formal power series (f.p.s.) over the field $K$ of real or complex numbers. In connection with the Bürman–Lagrange series, it is useful to consider the quantities
$$ P^{(m)}(n,k)=\frac{(n-1)!}{(k-1)!}\operatorname{Coef}_{t^{n-k}}[t^n g^{-n/m}(t)],\quad n=1,2,\dots,\quad k=1,\ldots,n, $$
which were introduced by the author and for $m=1$ coincide with the $B$-functions introduced by M. L. Platonov. Using Henrici's method, we show that the set of quantities
$$ Q^{(m)}(n,k)=\frac{n!}{k!}\operatorname{Coef}_{t^{n}}[g^{k/m}(t)],\quad n=1,2,\dots,\quad k=1,\ldots,n, $$
forms a quasi-orthogonal to the set $\{P^{(m)}(n,k)\}$, $n=1,2,\dots$, $k=1,\ldots,n$. We describe some properties of the coefficients of the series $x^r(t)$, the $r$th power of a f.p.s. $x(t)$ over the field $K$, where $r\in K$.
This research was supported by the Russian Foundation for Basic Research, grant 96–01–00531.
Received: 05.05.1997
Bibliographic databases:
Document Type: Article
UDC: 519.1
Language: Russian
Citation: B. I. Selivanov, “On combinatorial functions related to the Bürman–Lagrange series. Quasi-orthogonality relations”, Diskr. Mat., 10:1 (1998), 127–140; Discrete Math. Appl., 8:1 (1998), 127–140
Citation in format AMSBIB
\Bibitem{Sel98}
\by B.~I.~Selivanov
\paper On combinatorial functions related to the B\"urman--Lagrange series. Quasi-orthogonality relations
\jour Diskr. Mat.
\yr 1998
\vol 10
\issue 1
\pages 127--140
\mathnet{http://mi.mathnet.ru/dm415}
\crossref{https://doi.org/10.4213/dm415}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1669047}
\zmath{https://zbmath.org/?q=an:1001.05006}
\transl
\jour Discrete Math. Appl.
\yr 1998
\vol 8
\issue 1
\pages 127--140
Linking options:
  • https://www.mathnet.ru/eng/dm415
  • https://doi.org/10.4213/dm415
  • https://www.mathnet.ru/eng/dm/v10/i1/p127
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025