|
This article is cited in 10 scientific papers (total in 10 papers)
О приближении случайной булевой функции множеством квадратичных форм
B. V. Ryazanov, S. I. Chechëta
Abstract:
We consider the problem of approximation of a random Boolean function
by elements of the set of all Boolean functions of degree no greater than two,
i.e., by the quadratic forms. It is proved that the Hamming distance from
a random Boolean function of $n$ variables to the set of all quadratic forms
has in limit as $n\to\infty$ the double exponential distribution.
Received: 09.07.1993
Citation:
B. V. Ryazanov, S. I. Chechëta, “О приближении случайной булевой функции множеством квадратичных форм”, Diskr. Mat., 7:3 (1995), 129–145; Discrete Math. Appl., 5:5 (1995), 473–489
Linking options:
https://www.mathnet.ru/eng/dm594 https://www.mathnet.ru/eng/dm/v7/i3/p129
|
|