Dal'nevostochnyi Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dal'nevost. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dal'nevostochnyi Matematicheskii Zhurnal, 2020, Volume 20, Number 2, Pages 191–211
DOI: https://doi.org/10.47910/FEMJ202019
(Mi dvmg432)
 

This article is cited in 3 scientific papers (total in 3 papers)

On estimates for the norms of the Hardy operator acting in the Lorenz spaces

E. N. Lomakina

Computer Centre of Far Eastern Branch RAS, Khabarovsk
Full-text PDF (209 kB) Citations (3)
References:
Abstract: In the paper conditions are found under which the compact operator $Tf(x)=\varphi(x)\int_0^xf(\tau)v(\tau)\,d\tau,$ $x>0,$ acting in weighted Lorentz spaces $T:L^{r,s}_{v}(\mathbb{R^+})\to L^{p,q}_{\omega}(\mathbb{R^+})$ in the domain $1<\max (r,s)\le \min(p,q)<\infty,$ belongs to operator ideals $\mathfrak{S}^{(a)}_\alpha$ and $\mathfrak{E}_\alpha$, $0<\alpha<\infty$. And estimates are also obtained for the quasinorms of operator ideals in terms of integral expressions which depend on operator weight functions.
Key words: operator ideal, Hardy operator, compact operator, Lorentz spaces, approximation numbers, entropy numbers.
Received: 12.09.2020
Document Type: Article
UDC: 517.51
MSC: Primary 46E30; Secondary 47B38
Language: Russian
Citation: E. N. Lomakina, “On estimates for the norms of the Hardy operator acting in the Lorenz spaces”, Dal'nevost. Mat. Zh., 20:2 (2020), 191–211
Citation in format AMSBIB
\Bibitem{Lom20}
\by E.~N.~Lomakina
\paper On estimates for the norms of the Hardy operator acting in the Lorenz spaces
\jour Dal'nevost. Mat. Zh.
\yr 2020
\vol 20
\issue 2
\pages 191--211
\mathnet{http://mi.mathnet.ru/dvmg432}
\crossref{https://doi.org/10.47910/FEMJ202019}
Linking options:
  • https://www.mathnet.ru/eng/dvmg432
  • https://www.mathnet.ru/eng/dvmg/v20/i2/p191
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дальневосточный математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025