Dal'nevostochnyi Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dal'nevost. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dal'nevostochnyi Matematicheskii Zhurnal, 2023, Volume 23, Number 1, Pages 27–33
DOI: https://doi.org/10.47910/FEMJ202304
(Mi dvmg505)
 

This article is cited in 2 scientific papers (total in 2 papers)

Cantor property of quasi-unitary acts over completely (0-)simple semigroups

I. B. Kozhukhovab, A. S. Sotovb

a National Research University of Electronic Technology
b Lomonosov Moscow State University
Full-text PDF (138 kB) Citations (2)
References:
Abstract: A universal algebra $A$ is called cantorian if for any algebra $B$ of the same signature, the existence of injective homomorphisms $A\to B$ and $B \to A$ implies an isomorphism of algebras $A$ and $B$. A right act $X$ over a semigroup $S$ is called quasiunitary if $X=XS$. We prove that every quasiunitary act over a completely simple semigroup and also every quasiunitary act with zero over a completely 0-simple semigroup are cantorian.
Key words: act over semigroup, universal algebra, finiteness condition.
Funding agency Grant number
Russian Science Foundation 22-11-00052
This work was supported by the Russian Science Foundation grant no. 22-11-00052.
Received: 29.03.2022
Document Type: Article
UDC: 512.534.3
MSC: Primary 20M30; Secondary 08A35
Language: Russian
Citation: I. B. Kozhukhov, A. S. Sotov, “Cantor property of quasi-unitary acts over completely (0-)simple semigroups”, Dal'nevost. Mat. Zh., 23:1 (2023), 27–33
Citation in format AMSBIB
\Bibitem{KozSot23}
\by I.~B.~Kozhukhov, A.~S.~Sotov
\paper Cantor property of quasi-unitary acts over completely (0-)simple semigroups
\jour Dal'nevost. Mat. Zh.
\yr 2023
\vol 23
\issue 1
\pages 27--33
\mathnet{http://mi.mathnet.ru/dvmg505}
\crossref{https://doi.org/10.47910/FEMJ202304}
Linking options:
  • https://www.mathnet.ru/eng/dvmg505
  • https://www.mathnet.ru/eng/dvmg/v23/i1/p27
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дальневосточный математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025