|
|
Eurasian Mathematical Journal, 2018, Volume 9, Number 1, Pages 30–39
(Mi emj285)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Inequalities for weighted Hardy operators in weighted variable exponent Lebesgue space with $0 < p(x) < 1$
S. A. Bendaoud, A. Senouci Departement of Mathematics,
Ibn Khaldoun University,
Tiaret, Algeria
Abstract:
Weighted inequalities are proved for the weighted Hardy operators and the weighted dual of the classical Hardy operator acting from one weighted variable exponent Lebesgue space $L_{p(.),\omega_1} (0,\infty)$ to another weighted variable exponent Lebesgue space $L_{p(.),\omega_2} (0,\infty)$ for $0 < p(x) \leqslant q(x) < 1$.
Keywords and phrases:
inequalities, Hardy operators, variable exponent.
Received: 17.10.2016 Revised: 01.04.2018
Citation:
S. A. Bendaoud, A. Senouci, “Inequalities for weighted Hardy operators in weighted variable exponent Lebesgue space with $0 < p(x) < 1$”, Eurasian Math. J., 9:1 (2018), 30–39
Linking options:
https://www.mathnet.ru/eng/emj285 https://www.mathnet.ru/eng/emj/v9/i1/p30
|
|