Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2023, Volume 14, Number 3, Pages 26–34
DOI: https://doi.org/10.32523/2077-9879-2023-14-3-26-34
(Mi emj475)
 

Countably generated extensions of $QTAG$-modules

A. Hasan

College of Applied Industrial Technology, Jazan University, Jazan P.O. Box 2097, Kingdom of Saudi Arabia
References:
Abstract: Let the $QTAG$-module $M$ be the set-theoretic union of a countable collection of isotype submodules $S_k$ of countable length. For $0\leqslant k <\omega$ we prove that $M$ is totally projective if $S_k$ is totally projective. Certain related assertions in this direction are also presented.
Keywords and phrases: $QTAG$-modules, totally projective modules, $h$-pure submodules, isotype submodules.
Received: 18.06.2022
Document Type: Article
MSC: 16K20, 13C12, 13C13
Language: English
Citation: A. Hasan, “Countably generated extensions of $QTAG$-modules”, Eurasian Math. J., 14:3 (2023), 26–34
Citation in format AMSBIB
\Bibitem{Has23}
\by A.~Hasan
\paper Countably generated extensions of $QTAG$-modules
\jour Eurasian Math. J.
\yr 2023
\vol 14
\issue 3
\pages 26--34
\mathnet{http://mi.mathnet.ru/emj475}
\crossref{https://doi.org/10.32523/2077-9879-2023-14-3-26-34}
Linking options:
  • https://www.mathnet.ru/eng/emj475
  • https://www.mathnet.ru/eng/emj/v14/i3/p26
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025