|
This article is cited in 63 scientific papers (total in 63 papers)
On Sums of Projections
S. A. Kruglyak, V. I. Rabanovich, Yu. S. Samoilenko Institute of Mathematics, Ukrainian National Academy of Sciences
Abstract:
In the paper, for all $n\in\mathbb{N}$, we describe the set $\Sigma_n$ of all real numbers $\alpha$ admitting a collection of projections $P_1,\dots,P_n$ on a Hilbert space $H$ such that $\sum_{k=1}^n P_k=\alpha I$ ($I$ is the identity operator on $H$) and study the problem to find all collections of this kind for a given $\alpha\in\Sigma_n$.
Keywords:
algebra, representation, operator, matrix, projection, identity.
Received: 08.11.2001
Citation:
S. A. Kruglyak, V. I. Rabanovich, Yu. S. Samoilenko, “On Sums of Projections”, Funktsional. Anal. i Prilozhen., 36:3 (2002), 20–35; Funct. Anal. Appl., 36:3 (2006), 182–195
Linking options:
https://www.mathnet.ru/eng/faa201https://doi.org/10.4213/faa201 https://www.mathnet.ru/eng/faa/v36/i3/p20
|
|