Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2010, Volume 44, Issue 4, Pages 91–96
DOI: https://doi.org/10.4213/faa3017
(Mi faa3017)
 

This article is cited in 5 scientific papers (total in 5 papers)

Brief communications

Homogenization of the Parabolic Cauchy Problem in the Sobolev Class $H^1(\mathbb{R}^d)$

T. A. Suslina

St. Petersburg State University, Faculty of Physics
Full-text PDF (184 kB) Citations (5)
References:
Abstract: Homogenization in the small period limit for the solution $\mathbf{u}_\varepsilon$ of the Cauchy problem for a parabolic equation in $\mathbb{R}^d$ is studied. The coefficients are assumed to be periodic in $\mathbb{R}^d$ with respect to the lattice $\varepsilon\Gamma$. As $\varepsilon\to 0$, the solution $\mathbf{u}_\varepsilon$ converges in $L_2(\mathbb{R}^d)$ to the solution $\mathbf{u}_0$ of the effective problem with constant coefficients. The solution $\mathbf{u}_\varepsilon$ is approximated in the norm of the Sobolev space $H^1(\mathbb{R}^d)$ with error $O(\varepsilon)$; this approximation is uniform with respect to the $L_2$-norm of the initial data and contains a corrector term of order $\varepsilon$. The dependence of the constant in the error estimate on time $\tau$ is given. Also, an approximation in $H^1(\mathbb{R}^d)$ for the solution of the Cauchy problem for a nonhomogeneous parabolic equation is obtained.
Keywords: parabolic equation, Cauchy problem, homogenization, effective matrix, corrector, threshold effect.
Received: 26.04.2010
English version:
Functional Analysis and Its Applications, 2010, Volume 44, Issue 4, Pages 318–322
DOI: https://doi.org/10.1007/s10688-010-0043-9
Bibliographic databases:
Document Type: Article
UDC: 517.956.4
Language: Russian
Citation: T. A. Suslina, “Homogenization of the Parabolic Cauchy Problem in the Sobolev Class $H^1(\mathbb{R}^d)$”, Funktsional. Anal. i Prilozhen., 44:4 (2010), 91–96; Funct. Anal. Appl., 44:4 (2010), 318–322
Citation in format AMSBIB
\Bibitem{Sus10}
\by T.~A.~Suslina
\paper Homogenization of the Parabolic Cauchy Problem in the Sobolev Class~$H^1(\mathbb{R}^d)$
\jour Funktsional. Anal. i Prilozhen.
\yr 2010
\vol 44
\issue 4
\pages 91--96
\mathnet{http://mi.mathnet.ru/faa3017}
\crossref{https://doi.org/10.4213/faa3017}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2768568}
\zmath{https://zbmath.org/?q=an:1271.35047}
\transl
\jour Funct. Anal. Appl.
\yr 2010
\vol 44
\issue 4
\pages 318--322
\crossref{https://doi.org/10.1007/s10688-010-0043-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288487100009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650681175}
Linking options:
  • https://www.mathnet.ru/eng/faa3017
  • https://doi.org/10.4213/faa3017
  • https://www.mathnet.ru/eng/faa/v44/i4/p91
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025