Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2015, Volume 49, Issue 1, Pages 31–48
DOI: https://doi.org/10.4213/faa3171
(Mi faa3171)
 

This article is cited in 18 scientific papers (total in 18 papers)

Modeling of a Singularly Perturbed Spectral Problem by Means of Self-Adjoint Extensions of the Operators of the Limit Problems

S. A. Nazarovabc

a Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg
b Saint-Petersburg State Polytechnical University
c St. Petersburg State University, Department of Mathematics and Mechanics
References:
Abstract: We use self-adjoint extensions of differential and integral operators to construct an asymptotic model of the Steklov spectral problem describing surface waves over a bank. Estimates of the modeling error are established, and the following unexpected fact is revealed: an appropriate self-adjoint extension of the operators of the limit problems provides an approximation to the eigenvalues not only in the low- and midfrequency ranges of the spectrum but also on part of the high-frequency range.
Keywords: self-adjoint extension, asymptotics of the spectrum, Steklov spectral problem, surface waves.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-02175
Received: 07.12.2012
English version:
Functional Analysis and Its Applications, 2015, Volume 49, Issue 1, Pages 25–39
DOI: https://doi.org/10.1007/s10688-015-0080-5
Bibliographic databases:
Document Type: Article
UDC: 517.984.46+517.958+531.33
Language: Russian
Citation: S. A. Nazarov, “Modeling of a Singularly Perturbed Spectral Problem by Means of Self-Adjoint Extensions of the Operators of the Limit Problems”, Funktsional. Anal. i Prilozhen., 49:1 (2015), 31–48; Funct. Anal. Appl., 49:1 (2015), 25–39
Citation in format AMSBIB
\Bibitem{Naz15}
\by S.~A.~Nazarov
\paper Modeling of a Singularly Perturbed Spectral Problem by Means of Self-Adjoint Extensions of the Operators of the Limit
Problems
\jour Funktsional. Anal. i Prilozhen.
\yr 2015
\vol 49
\issue 1
\pages 31--48
\mathnet{http://mi.mathnet.ru/faa3171}
\crossref{https://doi.org/10.4213/faa3171}
\zmath{https://zbmath.org/?q=an:06485783}
\elib{https://elibrary.ru/item.asp?id=23421402}
\transl
\jour Funct. Anal. Appl.
\yr 2015
\vol 49
\issue 1
\pages 25--39
\crossref{https://doi.org/10.1007/s10688-015-0080-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000351307000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924975467}
Linking options:
  • https://www.mathnet.ru/eng/faa3171
  • https://doi.org/10.4213/faa3171
  • https://www.mathnet.ru/eng/faa/v49/i1/p31
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:726
    Full-text PDF :274
    References:101
    First page:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025