|
This article is cited in 3 scientific papers (total in 3 papers)
Brief communications
Description of Unconditional Bases Formed by Values of the Dunkl Kernels
G. M. Gubreev, V. N. Levchuka a Poltava National Technical University named after Yuri Kondratyuk
Abstract:
Unconditional bases of the form $\{d_\alpha(i\lambda_n t): \lambda_n \in \Lambda\}$ in the space $L_2(-a, a)$ with measure $|x|^\gamma dx$, $\gamma=2\alpha+1$, are described. Here $d_\alpha(ixt)$ is the Dunkl kernel determined by
$$
d_\alpha(z)=2^\alpha\Gamma(\alpha+1)z^{-\alpha}(J_\alpha(z)+iJ_{\alpha+1}(z)), \; \alpha>-1,
$$
where $J_\alpha$ is the Bessel function of the first kind.
Keywords:
Dunkl transform, unconditional basis, non-self-adjoint operator, entire function.
Received: 21.01.2014
Citation:
G. M. Gubreev, V. N. Levchuk, “Description of Unconditional Bases Formed by Values of the Dunkl Kernels”, Funktsional. Anal. i Prilozhen., 49:1 (2015), 79–82; Funct. Anal. Appl., 49:1 (2015), 64–66
Linking options:
https://www.mathnet.ru/eng/faa3176https://doi.org/10.4213/faa3176 https://www.mathnet.ru/eng/faa/v49/i1/p79
|
|