Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2015, Volume 49, Issue 1, Pages 88–93
DOI: https://doi.org/10.4213/faa3177
(Mi faa3177)
 

This article is cited in 9 scientific papers (total in 9 papers)

Brief communications

Homogenization of Solutions of Initial Boundary Value Problems for Parabolic Systems

Yu. M. Meshkovaa, T. A. Suslinab

a Chebyshev Laboratory, St. Petersburg State University, Department of Mathematics and Mechanics
b St. Petersburg State University, Faculty of Physics
Full-text PDF (171 kB) Citations (9)
References:
Abstract: Let ${\mathcal O}\subset {\mathbb R}^d$ be a bounded $C^{1,1}$ domain. In $L_2({\mathcal O};{\mathbb C}^n)$ we consider strongly elliptic operators $A_{D,\varepsilon}$ and $A_{N,\varepsilon}$ given by the differential expression $b({\mathbf D})^*g({\mathbf x}/\varepsilon)b({\mathbf D})$, $\varepsilon>0$, with Dirichlet and Neumann boundary conditions, respectively. Here $g({\mathbf x})$ is a bounded positive definite matrix-valued function assumed to be periodic with respect to some lattice and $b({\mathbf D})$ is a first-order differential operator. We find approximations of the operators $\exp(-A_{D,\varepsilon} t)$ and $\exp(-A_{N,\varepsilon} t)$ for fixed $t>0$ and small $\varepsilon$ in the $L_2 \to L_2$ and $L_2 \to H^1$ operator norms with error estimates depending on $\varepsilon$ and $t$. The results are applied to homogenize the solutions of initial boundary value problems for parabolic systems.
Keywords: homogenization of periodic differential operators, parabolic systems, initial boundary value problems, effective operator, corrector, operator error estimates.
Received: 07.02.2014
English version:
Functional Analysis and Its Applications, 2015, Volume 49, Issue 1, Pages 72–76
DOI: https://doi.org/10.1007/s10688-015-0087-y
Bibliographic databases:
Document Type: Article
UDC: 517.956.4
Language: Russian
Citation: Yu. M. Meshkova, T. A. Suslina, “Homogenization of Solutions of Initial Boundary Value Problems for Parabolic Systems”, Funktsional. Anal. i Prilozhen., 49:1 (2015), 88–93; Funct. Anal. Appl., 49:1 (2015), 72–76
Citation in format AMSBIB
\Bibitem{MesSus15}
\by Yu.~M.~Meshkova, T.~A.~Suslina
\paper Homogenization of Solutions of Initial Boundary Value Problems for Parabolic Systems
\jour Funktsional. Anal. i Prilozhen.
\yr 2015
\vol 49
\issue 1
\pages 88--93
\mathnet{http://mi.mathnet.ru/faa3177}
\crossref{https://doi.org/10.4213/faa3177}
\zmath{https://zbmath.org/?q=an:06485790}
\elib{https://elibrary.ru/item.asp?id=23421409}
\transl
\jour Funct. Anal. Appl.
\yr 2015
\vol 49
\issue 1
\pages 72--76
\crossref{https://doi.org/10.1007/s10688-015-0087-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000351307000010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924989511}
Linking options:
  • https://www.mathnet.ru/eng/faa3177
  • https://doi.org/10.4213/faa3177
  • https://www.mathnet.ru/eng/faa/v49/i1/p88
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025