Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2022, Volume 56, Issue 1, Pages 94–105
DOI: https://doi.org/10.4213/faa3921
(Mi faa3921)
 

This article is cited in 4 scientific papers (total in 4 papers)

A Hilbert $C^*$-modules with extremal properties

D. V. Fufaevab

a Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
b Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (619 kB) Citations (4)
References:
Abstract: We construct an example of a Hilbert $C^*$-module which shows that Troitsky's theorem on the geometric essence of $\mathcal{A}$-compact operators between Hilbert $C^*$-modules cannot be extended to modules which are not countably generated case (even in the case of a stronger uniform structure, which is also introduced). In addition, the constructed module admits no frames.
Keywords: Hilbert $C^*$-module, uniform structure, totally bounded set, compact operator, $\mathcal{A}$-compact operator, locally compact space, Radon measure.
Funding agency Grant number
Foundation for the Development of Theoretical Physics and Mathematics BASIS
The work was supported by the Theoretical Physics and Mathematics Advancement Foundation “BASIS.”
Received: 18.06.2021
Revised: 18.06.2021
Accepted: 20.08.2021
Published: 25.01.2022
English version:
Functional Analysis and Its Applications, 2022, Volume 56, Issue 1, Pages 72–80
DOI: https://doi.org/10.1134/S0016266322010075
Bibliographic databases:
Document Type: Article
UDC: 515.122+517.986.32
Language: Russian
Citation: D. V. Fufaev, “A Hilbert $C^*$-modules with extremal properties”, Funktsional. Anal. i Prilozhen., 56:1 (2022), 94–105; Funct. Anal. Appl., 56:1 (2022), 72–80
Citation in format AMSBIB
\Bibitem{Fuf22}
\by D.~V.~Fufaev
\paper A Hilbert $C^*$-modules with extremal properties
\jour Funktsional. Anal. i Prilozhen.
\yr 2022
\vol 56
\issue 1
\pages 94--105
\mathnet{http://mi.mathnet.ru/faa3921}
\crossref{https://doi.org/10.4213/faa3921}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4460485}
\transl
\jour Funct. Anal. Appl.
\yr 2022
\vol 56
\issue 1
\pages 72--80
\crossref{https://doi.org/10.1134/S0016266322010075}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000833024800007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85135165487}
Linking options:
  • https://www.mathnet.ru/eng/faa3921
  • https://doi.org/10.4213/faa3921
  • https://www.mathnet.ru/eng/faa/v56/i1/p94
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025