Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2025, Volume 59, Issue 1, Pages 107–122
DOI: https://doi.org/10.4213/faa4158
(Mi faa4158)
 

(Weakly) almost periodic functions and fixed point properties on norm separable $*$-weak compact convex sets in dual Banach spaces

Khadime Salame

Departement de Mathematiques Universite Iba Der Thiam de Thies BP 967 Thies, Senegal
References:
Abstract: Given a semitopological semigroup $S$, let $\operatorname{WAP}(S)$ and $\operatorname{AP}(S)$ be the algebras of weakly and strongly almost periodic functions on $S$, respectively. This paper centers around the study of the fixed point property ($\mathbf{F}_{*,s}$): whenever $\pi\colon S\times K \to K$ is a jointly $*$-weak continuous nonexpansive action on a non-empty norm separable $*$-weak compact convex set $K$ in the dual $E^*$ of a Banach space $E$, then there is a common fixed point for $S$ in $K$. We are primarily interested in answering the following problems posed by Lau and Zhang. (1) Let $S$ be a discrete semigroup. If the fixed point property ($\mathbf{F}_{*,s}$) holds, does $\operatorname{WAP}(S)$ have a left invariant mean ? (2) Is the existence of a left invariant mean on $\operatorname{WAP}(S)$ a sufficient condition to ensure the fixed point property ($\mathbf{F}_{*,s}$)? (3) Do the bicyclic semigroups $S_2=\langle e,a,b,c \colon ab=ac=e\rangle$ and $S_3=\langle e,a,b,c,d \colon ac=bd=e\rangle$ have the fixed point property ($\mathbf{F}_{*,s}$)? Among other things, characterization theorems of the amenability property of the algebras $\operatorname{WAP}(S)$ and $\operatorname{AP}(S)$ are also given.
Keywords: almost periodic functions, bicyclic semigroups, invariant means, fixed point properties, nonexpansive mappings, weakly almost periodic functions.
Received: 15.09.2023
Accepted: 29.04.2024
Published: 03.02.2025
English version:
Functional Analysis and Its Applications, 2025, Volume 59, Issue 1, Pages 79–90
DOI: https://doi.org/10.1134/S1234567825010070
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Khadime Salame, “(Weakly) almost periodic functions and fixed point properties on norm separable $*$-weak compact convex sets in dual Banach spaces”, Funktsional. Anal. i Prilozhen., 59:1 (2025), 107–122; Funct. Anal. Appl., 59:1 (2025), 79–90
Citation in format AMSBIB
\Bibitem{Sal25}
\by Khadime Salame
\paper (Weakly) almost periodic functions and fixed point properties on~norm separable $*$-weak compact convex sets in~dual~Banach~spaces
\jour Funktsional. Anal. i Prilozhen.
\yr 2025
\vol 59
\issue 1
\pages 107--122
\mathnet{http://mi.mathnet.ru/faa4158}
\crossref{https://doi.org/10.4213/faa4158}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4902507}
\transl
\jour Funct. Anal. Appl.
\yr 2025
\vol 59
\issue 1
\pages 79--90
\crossref{https://doi.org/10.1134/S1234567825010070}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001469314900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105002711524}
Linking options:
  • https://www.mathnet.ru/eng/faa4158
  • https://doi.org/10.4213/faa4158
  • https://www.mathnet.ru/eng/faa/v59/i1/p107
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025