Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2025, Volume 59, Issue 1, Pages 29–45
DOI: https://doi.org/10.4213/faa4161
(Mi faa4161)
 

The interlace polynomial of binary delta-matroids and link invariants

Nadezhda Kodaneva

National Research University "Higher School of Economics", Moscow, Russia
References:
Abstract: In this work, we study the interlace polynomial as a generalization of a graph invariant to delta-matroids. We prove that the interlace polynomial satisfies the four-term relation for delta-matroids and thus determines a finite type invariant of links in the $3$-sphere. Using the interlace polynomial, we give a lower bound for the size of the Hopf algebra of binary delta-matroids modulo the $4$-term relations.
Keywords: interlace polynomial, knot and link invariants, binary delta-matroids, graph invariants.
Funding agency Grant number
HSE Basic Research Program
This work is an output of a research project implemented as part of the Basic Research Program at HSE University.
Received: 29.09.2023
Revised: 11.03.2024
Accepted: 29.04.2024
Published: 03.02.2025
English version:
Functional Analysis and Its Applications, 2025, Volume 59, Issue 1, Pages 19–31
DOI: https://doi.org/10.1134/S1234567825010033
Bibliographic databases:
Document Type: Article
MSC: 05C31, 57K14
Language: Russian
Citation: Nadezhda Kodaneva, “The interlace polynomial of binary delta-matroids and link invariants”, Funktsional. Anal. i Prilozhen., 59:1 (2025), 29–45; Funct. Anal. Appl., 59:1 (2025), 19–31
Citation in format AMSBIB
\Bibitem{Kod25}
\by Nadezhda Kodaneva
\paper The interlace polynomial of binary delta-matroids and link invariants
\jour Funktsional. Anal. i Prilozhen.
\yr 2025
\vol 59
\issue 1
\pages 29--45
\mathnet{http://mi.mathnet.ru/faa4161}
\crossref{https://doi.org/10.4213/faa4161}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4902503}
\transl
\jour Funct. Anal. Appl.
\yr 2025
\vol 59
\issue 1
\pages 19--31
\crossref{https://doi.org/10.1134/S1234567825010033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001469314900007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105002724545}
Linking options:
  • https://www.mathnet.ru/eng/faa4161
  • https://doi.org/10.4213/faa4161
  • https://www.mathnet.ru/eng/faa/v59/i1/p29
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025