Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2024, Volume 58, Issue 2, Pages 100–114
DOI: https://doi.org/10.4213/faa4194
(Mi faa4194)
 

This article is cited in 1 scientific paper (total in 1 paper)

The miracle of integer eigenvalues

Richard Kenyona, Maxim Kontsevichb, Oleg Ogievetskiicdefg, Cosmin Pohoatah, Will Sawini, Semen Shlosmandcegjk

a Yale University, New Haven, USA
b Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France
c Université de Toulon
d Aix-Marseille Université
e CNRS – Center of Theoretical Physics
f P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow
g Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
h Emory University
i Princeton University, Princeton, USA
j Yanqi Lake Beijing Institute of Mathematical Sciences and Applications
k Skolkovo Institute of Science and Technology
Full-text PDF (786 kB) Citations (1)
References:
Abstract: For partially ordered sets $(X, \preccurlyeq)$, we consider the square matrices $M^{X}$ with rows and columns indexed by linear extensions of the partial order on $X$. Each entry $(M^{X})_{PQ}$ is a formal variable defined by a pedestal of the linear order $Q$ with respect to linear order $P$. We show that all eigenvalues of any such matrix $M^{X}$ are $\mathbb{Z}$-linear combinations of those variables.
Keywords: partially ordered set (poset), pedestal, filter, Young diagram.
Funding agency Grant number
National Science Foundation DMS-1940932
DMS-2101491
Simons Foundation 327929
Russian Science Foundation 23-10-00150
Sloan Research Fellowship
R.K. was supported by NSF grant DMS-1940932 and the Simons Foundation grant 327929. The work of W.S. was supported by the NSF grant DMS-2101491 and by the Sloan Research Fellowship. The work of S.S. was supported by the RSF under project 23-11-00150.
Received: 15.12.2023
Revised: 20.02.2024
Accepted: 14.03.2024
Published: 30.04.2024
English version:
Functional Analysis and Its Applications, 2024, Volume 58, Issue 2, Pages 182–194
DOI: https://doi.org/10.1134/S0016266324020072
Bibliographic databases:
Document Type: Article
MSC: 05E10
Language: Russian
Citation: Richard Kenyon, Maxim Kontsevich, Oleg Ogievetskii, Cosmin Pohoata, Will Sawin, Semen Shlosman, “The miracle of integer eigenvalues”, Funktsional. Anal. i Prilozhen., 58:2 (2024), 100–114; Funct. Anal. Appl., 58:2 (2024), 182–194
Citation in format AMSBIB
\Bibitem{KenKonOgi24}
\by Richard~Kenyon, Maxim~Kontsevich, Oleg~Ogievetskii, Cosmin~Pohoata, Will~Sawin, Semen~Shlosman
\paper The miracle of integer eigenvalues
\jour Funktsional. Anal. i Prilozhen.
\yr 2024
\vol 58
\issue 2
\pages 100--114
\mathnet{http://mi.mathnet.ru/faa4194}
\crossref{https://doi.org/10.4213/faa4194}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4902450}
\transl
\jour Funct. Anal. Appl.
\yr 2024
\vol 58
\issue 2
\pages 182--194
\crossref{https://doi.org/10.1134/S0016266324020072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001273431600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85199188381}
Linking options:
  • https://www.mathnet.ru/eng/faa4194
  • https://doi.org/10.4213/faa4194
  • https://www.mathnet.ru/eng/faa/v58/i2/p100
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025