Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2024, Volume 58, Issue 2, Pages 52–71
DOI: https://doi.org/10.4213/faa4202
(Mi faa4202)
 

Elliptic analogue of the Vershik–Kerov limit shape

Andrei Grekova, Nikita Nekrasovba

a Yang Institute for Theoretical Physics, Stony Brook University
b Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, USA
References:
Abstract: We review the limit shape problem for the Plancherel measure and its generalizations found in supersymmetric gauge theory instanton count. We focus on the measure, interpolating between the Plancherel measure and the uniform measure, a $U(1)$ case of $\mathcal{N}=2^{*}$ gauge theory. We give the formula for its limit shape in terms of elliptic functions, generalizing the trigonometric “arcsin” law of Vershik–Kerov and Logan–Schepp.
Keywords: limit measures, limit shape, spectral curves, instantons, enumerative geometry.
Funding agency Grant number
National Science Foundation 2310279
Research is partly supported by NSF PHY Award 2310279.
Received: 05.02.2024
Revised: 11.03.2024
Accepted: 18.03.2024
Published: 30.04.2024
English version:
Functional Analysis and Its Applications, 2024, Volume 58, Issue 2, Pages 143–159
DOI: https://doi.org/10.1134/S0016266324020059
Bibliographic databases:
Document Type: Article
MSC: 60F15, 14H81, 81Q60
Language: Russian
Citation: Andrei Grekov, Nikita Nekrasov, “Elliptic analogue of the Vershik–Kerov limit shape”, Funktsional. Anal. i Prilozhen., 58:2 (2024), 52–71; Funct. Anal. Appl., 58:2 (2024), 143–159
Citation in format AMSBIB
\Bibitem{GreNek24}
\by Andrei~Grekov, Nikita~Nekrasov
\paper Elliptic analogue of the Vershik--Kerov limit shape
\jour Funktsional. Anal. i Prilozhen.
\yr 2024
\vol 58
\issue 2
\pages 52--71
\mathnet{http://mi.mathnet.ru/faa4202}
\crossref{https://doi.org/10.4213/faa4202}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4902448}
\transl
\jour Funct. Anal. Appl.
\yr 2024
\vol 58
\issue 2
\pages 143--159
\crossref{https://doi.org/10.1134/S0016266324020059}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001273431600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85199215185}
Linking options:
  • https://www.mathnet.ru/eng/faa4202
  • https://doi.org/10.4213/faa4202
  • https://www.mathnet.ru/eng/faa/v58/i2/p52
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025