Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2025, Volume 59, Issue 1, Pages 54–88
DOI: https://doi.org/10.4213/faa4234
(Mi faa4234)
 

Derived category of equivariant coherent sheaves on a smooth toric variety and Koszul duality

Valery Luntsab

a Indiana University, Department of Mathematics, Bloomington, USA
b National Research University "Higher School of Economics", Moscow, Russia
References:
Abstract: Let $X$ be a smooth toric variety defined by the fan $\Sigma$. We consider $\Sigma$ as a finite set with topology and define a natural sheaf of graded algebras $\mathcal{A}_\Sigma$ on $\Sigma$. The category of modules over $\mathcal{A}_\Sigma$ is studied (together with other related categories). This leads to a certain combinatorial Koszul duality equivalence.
We describe the equivariant category of coherent sheaves $\mathrm{coh}_{X,T}$ and a related (slightly bigger) equivariant category $\mathcal{O}_{X,T}\text{-}\mathrm{mod}$ in terms of sheaves of modules over the sheaf of algebras $\mathcal{A}_\Sigma$. Eventually (for a complete $X$), the combinatorial Koszul duality is interpreted in terms of the Serre functor on $D^b(\mathrm{coh}_{X,T})$.
Keywords: toric varieties, equivariant coherent sheaves, derived category.
Funding agency Grant number
HSE Basic Research Program
The article was prepared within the framework of the project “International academic cooperation” HSE University.
Received: 23.05.2024
Revised: 14.08.2024
Accepted: 19.08.2024
Published: 03.02.2025
English version:
Functional Analysis and Its Applications, 2025, Volume 59, Issue 1, Pages 38–64
DOI: https://doi.org/10.1134/S1234567825010057
Bibliographic databases:
Document Type: Article
MSC: 14M25, 18G80, 57S25
Language: Russian
Citation: Valery Lunts, “Derived category of equivariant coherent sheaves on a smooth toric variety and Koszul duality”, Funktsional. Anal. i Prilozhen., 59:1 (2025), 54–88; Funct. Anal. Appl., 59:1 (2025), 38–64
Citation in format AMSBIB
\Bibitem{Lun25}
\by Valery Lunts
\paper Derived category of equivariant coherent sheaves on~a~smooth~toric variety and Koszul duality
\jour Funktsional. Anal. i Prilozhen.
\yr 2025
\vol 59
\issue 1
\pages 54--88
\mathnet{http://mi.mathnet.ru/faa4234}
\crossref{https://doi.org/10.4213/faa4234}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4902505}
\transl
\jour Funct. Anal. Appl.
\yr 2025
\vol 59
\issue 1
\pages 38--64
\crossref{https://doi.org/10.1134/S1234567825010057}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001469314900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105002724043}
Linking options:
  • https://www.mathnet.ru/eng/faa4234
  • https://doi.org/10.4213/faa4234
  • https://www.mathnet.ru/eng/faa/v59/i1/p54
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025