Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2025, Volume 59, Issue 2, Pages 46–66
DOI: https://doi.org/10.4213/faa4241
(Mi faa4241)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the field analogue of the elliptic spin Calogero–Moser model: lax pair and equations of motion

Andrei Zotovab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Institute for Theoretical and Mathematical Physics of Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: A Lax pair for the field analogue of the classical spin elliptic Calogero–Moser model is proposed. Namely, using the previously known Lax matrix, we suggest an ansatz for the accompanying matrix. The presented construction is valid when the matrix of spin variables ${\mathcal S}\in\operatorname{Mat}(N,\mathbb C)$ satisfies the condition ${\mathcal S}^2=c_0{\mathcal S}$ with some constant $c_0\in\mathbb C$. It is shown that the Lax pair satisfies the Zakharov–Shabat equation with unwanted term, thus providing equations of motion on the unreduced phase space. The unwanted term vanishes after additional reduction. In the special case $\operatorname{rank}(\mathcal S)=1$, we show that the reduction provides the Lax pair of the spinless field Calogero–Moser model obtained earlier by Akhmetshin, Krichever, and Volvovski.
Keywords: elliptic integrable system, spin Calogero–Moser model, integrable hierarchy, Landau–Lifshitz equation.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-265
This work was performed at the Steklov International Mathematical Center and supported by the Ministry of Science and Higher Education of the Russian Federation (agreement № 075-15-2022-265).
Received: 01.07.2024
Revised: 04.10.2024
Accepted: 11.10.2024
Published: 28.05.2025
English version:
Functional Analysis and Its Applications, 2025, Volume 59, Issue 2, Pages 142–158
DOI: https://doi.org/10.1134/S1234567825020053
Bibliographic databases:
Document Type: Article
MSC: 37K10
Language: Russian
Citation: Andrei Zotov, “On the field analogue of the elliptic spin Calogero–Moser model: lax pair and equations of motion”, Funktsional. Anal. i Prilozhen., 59:2 (2025), 46–66; Funct. Anal. Appl., 59:2 (2025), 142–158
Citation in format AMSBIB
\Bibitem{Zot25}
\by Andrei~Zotov
\paper On the field analogue of the elliptic spin Calogero--Moser model: lax pair and equations of motion
\jour Funktsional. Anal. i Prilozhen.
\yr 2025
\vol 59
\issue 2
\pages 46--66
\mathnet{http://mi.mathnet.ru/faa4241}
\crossref{https://doi.org/10.4213/faa4241}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4932427}
\transl
\jour Funct. Anal. Appl.
\yr 2025
\vol 59
\issue 2
\pages 142--158
\crossref{https://doi.org/10.1134/S1234567825020053}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001523054600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105010002199}
Linking options:
  • https://www.mathnet.ru/eng/faa4241
  • https://doi.org/10.4213/faa4241
  • https://www.mathnet.ru/eng/faa/v59/i2/p46
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:187
    Full-text PDF :4
    Russian version HTML:15
    References:17
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025