Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, Forthcoming paper (Mi faa4272)  

On translation and dilation invariant seminorms

M. S. Romanov

Lomonosov Moscow State University, Moscow, Russia
Abstract: We consider complete seminormed spaces of functions of one real argument, such that the kernel of the seminorm is finite-dimensional. If the seminorm is invariant with respect to affine change of argument, we say that the space is "interesting". We proved that the maximal "interesting" space embedded into L_{1,loc}(R) is equivalent to BMO, and the maximal "interesting" space embedded into D'(R) is equivalent to the real Bloch space. Also we construct minimal "interesting" space which contains space of smooth functions with compact support.
Keywords: Bloch space, Zygmund space, BMO, seminormed space, invariant seminorm.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-284
Received: 19.11.2024
Revised: 26.06.2025
Accepted: 03.07.2025
Document Type: Article
MSC: 26A99, 46E99, 42B35
Language: Russian
Linking options:
  • https://www.mathnet.ru/eng/faa4272
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025