Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2005, Volume 39, Issue 4, Pages 62–68
DOI: https://doi.org/10.4213/faa85
(Mi faa85)
 

This article is cited in 6 scientific papers (total in 6 papers)

Removable Singularities of Solutions of the Minimal Surface Equation

A. V. Pokrovskii

Institute of Mathematics, Ukrainian National Academy of Sciences
Full-text PDF (161 kB) Citations (6)
References:
Abstract: Suppose that $G$ is a bounded domain in $\mathbb{R}^n$ ($n\ge 2$), $E\ne G$ is a relatively closed set in $G$, and $0<\alpha<1$. We prove that $E$ is removable for solutions of the minimal surface equation in the class $C^{1,\alpha}(G)_{\operatorname{loc}}$ if and only if the ($n-1+\alpha$)-dimensional Hausdorff measure of $E$ is zero.
Keywords: removable singularity, minimal surface, Hölder class, Hausdorff measure.
Received: 06.05.2004
English version:
Functional Analysis and Its Applications, 2005, Volume 39, Issue 4, Pages 296–300
DOI: https://doi.org/10.1007/s10688-005-0050-4
Bibliographic databases:
Document Type: Article
UDC: 517.956
Language: Russian
Citation: A. V. Pokrovskii, “Removable Singularities of Solutions of the Minimal Surface Equation”, Funktsional. Anal. i Prilozhen., 39:4 (2005), 62–68; Funct. Anal. Appl., 39:4 (2005), 296–300
Citation in format AMSBIB
\Bibitem{Pok05}
\by A.~V.~Pokrovskii
\paper Removable Singularities of Solutions of the Minimal Surface Equation
\jour Funktsional. Anal. i Prilozhen.
\yr 2005
\vol 39
\issue 4
\pages 62--68
\mathnet{http://mi.mathnet.ru/faa85}
\crossref{https://doi.org/10.4213/faa85}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2197514}
\zmath{https://zbmath.org/?q=an:1116.53009}
\transl
\jour Funct. Anal. Appl.
\yr 2005
\vol 39
\issue 4
\pages 296--300
\crossref{https://doi.org/10.1007/s10688-005-0050-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234168400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-29144521663}
Linking options:
  • https://www.mathnet.ru/eng/faa85
  • https://doi.org/10.4213/faa85
  • https://www.mathnet.ru/eng/faa/v39/i4/p62
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025