Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2019, Volume 22, Issue 6, Pages 201–225 (Mi fpm1860)  

This article is cited in 13 scientific papers (total in 13 papers)

Topological analysis of a billiard in elliptic ring in a potential field

S. E. Pustovoytov

Moscow State University, Moscow, Russia
References:
Abstract: We study a billiard in a domain bounded by two confocal ellipses. The Hooke potential is placed at the center of the ellipses. This dynamic system turns out to be Liouville integrable. Therefore, we can make a topological analysis studying the foliation of the phase manifold by integrals. We calculate Fomenko–Zieschang invariants (marked molecules) for isoenergy manifolds of every level of the Hamiltonian, and also give examples of other integrable systems that are Liouville equivalent to our billiard system.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-6399.2018.1
This research was supported by the program “Leading Scientific Schools” (grant No. NSh-6399.2018.1, Agreement No. 075-02-2018-867).
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 259, Issue 5, Pages 712–729
DOI: https://doi.org/10.1007/s10958-021-05656-0
Document Type: Article
UDC: 517.938.5
Language: Russian
Citation: S. E. Pustovoytov, “Topological analysis of a billiard in elliptic ring in a potential field”, Fundam. Prikl. Mat., 22:6 (2019), 201–225; J. Math. Sci., 259:5 (2021), 712–729
Citation in format AMSBIB
\Bibitem{Pus19}
\by S.~E.~Pustovoytov
\paper Topological analysis of a~billiard in elliptic ring in a~potential field
\jour Fundam. Prikl. Mat.
\yr 2019
\vol 22
\issue 6
\pages 201--225
\mathnet{http://mi.mathnet.ru/fpm1860}
\transl
\jour J. Math. Sci.
\yr 2021
\vol 259
\issue 5
\pages 712--729
\crossref{https://doi.org/10.1007/s10958-021-05656-0}
Linking options:
  • https://www.mathnet.ru/eng/fpm1860
  • https://www.mathnet.ru/eng/fpm/v22/i6/p201
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025